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Abstract 

Repeated revolutions in sequencing technologies have facilitated the accumulation of large 

collections of homologous DNA sequences.  A major endeavor in current molecular biological 

research is to exploit these data by comparative analysis, in order to gain insights into the 

function of these biological sequences.  A wide range of comparative sequence analyses, from 

molecular phylogenetics to protein three-dimensional structure prediction, depend on multiple 

sequence alignment (MSA) and phylogenetic tree reconstruction as the fundamental data 

structures for comparative analysis.  Sophisticated algorithms have been developed for both 

tasks, but in practice, extensive portions of the MSA and of the tree are often unreliable.  The 

independent difficulties in each of the two challenges are exacerbated because they are 

inherently intertwined – MSA algorithms use a tree to guide progressive sequence alignment, 

while tree reconstruction algorithms rely on an MSA.  This mutual dependency unavoidably 

leads to propagation of errors between the two stages of sequence analysis. 

The studies compiled in this thesis strive to address the challenges in reducing errors in the 

reconstruction of both alignment and phylogeny, and explore the bidirectional passing of errors 

between the two.  Specifically, in Chapter ‎3 hybrid phylogeny reconstruction methods are 

developed to take advantage of accurate evolutionary modeling in a Bayesian probabilistic 

approach in combination with efficient distance-based algorithms.  Significant contribution to 

accuracy is achieved using models of evolutionary rate variation, and more advanced covarion-

like models of site-specific rate variation are also implemented.  The application of these 



 

 

methods to two specific phylogenetic case studies is discussed.  Next, Chapter ‎4 uses an 

iterative scheme to investigate the contribution of improved guide trees to the accuracy of 

different progressive alignment algorithms. 

While these efforts strive to reduce errors, it is also imperative to understand and characterize 

the various sources of error that remain.  The investigation of mutual dependency 

demonstrates that uncertainties in the guide trees used by progressive alignment methods are 

a major source of alignment uncertainty.  This insight is used in Chapter ‎5 to develop a novel 

method for quantifying the robustness of each column of the alignment to uncertainty in the 

guide tree.  Evaluation using benchmark data shows that this confidence measure accurately 

identifies unreliable alignment regions and allows filtering or masking of residues where errors 

are predicted.  Chapter ‎6 describes an implementation of the new measure in the GUIDANCE 

web server, which offers powerful predictors to identify alignment errors together with the 

tools to deal with such errors.  Thereby, researchers are provided with warning signs and 

preventive measures to protect downstream MSA-based analyses from the detrimental effects 

of alignment errors.   

Throughout these studies, the proposed algorithmic improvements are evaluated using widely 

accepted benchmark databases including both simulated and real sequences.  The methods 

developed allow utilization of advanced probabilistic models of sequence evolution together 

with the leading algorithms for phylogeny and alignment.  Nevertheless, special attention is 

given to highly efficient algorithmic choices that permit analysis of the quantities of data 



 

 

generated by the rapidly advancing sequencing technologies.  Thereby, accurate analysis is now 

feasible for large datasets of many thousands of sequences, which previously could only have 

been studied by simplistic methods.  Efforts were made to distribute these methods to the 

wider scientific community, and to formulate them as modular tools that can be merge with 

parallel methodological improvements.  The methodologies developed herein lie at the 

foundation of comparative sequence analysis and are expected to contribute to the accuracy 

and reliability of subsequent studies of molecular biology. 
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1 Background 

The study of genetics has progressed from the early discoveries of single genes, through the 

characterization of specific DNA sequences and the amino acid sequences which they code, to 

the modern sequencing of whole genomes.  Such progress would not have been possible 

without a continuous chain of dramatic revolutions in biotechnology, providing order-of-

magnitude enhancements in sequencing yield every few years.  Today, the Genome Analyzer 

platform (Illumina Inc.) is leading the so-called “next generation” sequencing market with a 

capacity to generate 1.5 giga base in a single two-day run (Ansorge 2009; Karow 2009).  

Sequence databanks are growing rapidly, Genbank currently holding 114 giga bases 

(ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt), and researchers struggle with analysis of the data.   

1.1 Comparative sequence analysis 

To translate mass sequencing into biologically meaningful insights, advanced tools in 

bioinformatics have been developed for searching sequence databases and for comparative 

sequence analysis.  A wide range of computational approaches rely on comparison of 

homologous sequences to arrive at predictions regarding the structure and function of 

macromolecules.  The immediate first step after sequencing a new gene is a BLAST search that 

may instantly provide clues to the function of the gene, via known functions of its homologs.  

Many more advanced comparative analyses rely on this power of guilt by association.  

Typically, the basis for such comparisons is a pairwise or multiple sequence alignment (MSA).  

ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt


2 

 

Homologous sequences of nucleotides or amino acids are arranged one on top of the other, 

such that similar residues are aligned in columns (see example in Figure ‎1.1).  It is important to 

make a distinction between two approaches to alignment that differ in the type of similarity 

they identify.  Similarity among residues aligned in the same column may be due to true 

homology, i.e., residues descended from a common ancestral residue, either unchanged or 

through substitutions, while the gaps in a sequence as representing either a deletion or 

insertion mutation.  Alternatively, similarity of aligned residues may result from analogy 

through convergent evolution, for example, if similar residues were independently inserted in 

the same position of the sequence in two separate lineages.  In this case the aligned residues 

may carry the same structural or biochemical role, but they cannot be considered as a genuine 

homology. 

 

Figure ‎1.1: A multiple sequence alignment.  Amino-acid sequences of homologous 

proteins are aligned so that similar residues are arranged in columns. 

An MSA may be the most fundamental data structure in bioinformatics, upon which many 

types of analysis are conducted.  Homology search tools such as BLAST use sequence alignment 

to identify homologs in the database, and more sophisticated approaches such as PSI-BLAST 

ARLMEMIQEEVA------DPIVKGG  

ARLMSMIQEEVS------EPLVKGG  

AQLMSMIHEETS------DLFVKG-  

ARLMAQIKEEPAGSKGSADPTVRGG 

ARLMPLLQEETEV-------GVQGG  

ARLMPLLQEEVEV-------GVQGG  
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and Pfam use an MSA as the search query (Altschul et al. 1997; Sonnhammer, Eddy, and Durbin 

1997).  Many computational methodologies use the MSA in conjunction with a phylogenetic 

tree, which together describe the evolutionary dynamics of a sequence in terms of speciation 

and divergence by substitutions, insertions and deletions.  Virtually all molecular evolutionary 

studies rely on MSAs for phylogeny reconstruction (e.g., Stamatakis, Ludwig, and Meier 2005), 

for inference of selection forces acting on genes (e.g., Nielsen and Yang 1998; Kim and Nielsen 

2004), or for detection of recombination and horizontal gene transfer (e.g., Husmeier and 

Wright 2001).  Usage of MSAs extends to many diverse applications from protein 3D structural 

modeling to definition of protein domains and sequence motifs; from population genetics to 

RNA secondary structure prediction.  In all such studies, the reconstruction of an MSA and a 

tree is the necessary first step allowing downstream analyses to derive insights and predictions 

regarding the biological nature and function of sequences.   

1.2 Sequence alignment 

In the early days of molecular sequence analysis, when precious few sequences were acquired 

through much labor, sequences were aligned manually.  Nowadays, when researchers wish to 

analyze large datasets ranging from dozens to thousands of sequences, such a human endeavor 

is not feasible.  In addition, manual alignment is subjective and irreproducible.  Automated 

alignment algorithms have been developed for decades.  The first efficient dynamic algorithms 

for pairwise alignment were developed in the 1970’s (Needleman and Wunsch 1970; Smith and 

Waterman 1981).  These algorithms were the basis for practical solutions for multiple 
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alignment developed in the late 1980’s (Feng and Doolittle 1987; Higgins and Sharp 1988; 

Lipman, Altschul, and Kececioglu 1989).  All through the following two decades more and more 

sophisticated MSA algorithms and novel approaches were proposed, demonstrating that the 

problem of alignment is still not satisfactorily resolved (representative publications: Thompson, 

Higgins, and Gibson 1994; Morgenstern et al. 1998; Notredame, Higgins, and Heringa 2000; 

Katoh et al. 2002; Edgar 2004; Do et al. 2005; Lassmann and Sonnhammer 2005a; Loytynoja 

and Goldman 2005; Redelings and Suchard 2005; Drummond and Rambaut 2007; Bradley et al. 

2009; Liu et al. 2009).  These algorithms are typically used to align sequences of single genes or 

proteins – hundreds or thousands of characters in length.  Such studies will be the focus of this 

dissertation.  Following the genomic revolution in the last decade MSA algorithms were 

specially adapted to whole genome alignment, which is reviewed in Batzoglou (2005) and will 

not be discussed here. 

Reconstructing an MSA proves to be challenging on several levels.  Naturally, the more 

diverged the sequences the greater the challenge.  In the extreme, homologous sequences that 

have undergone multiple substitutions per position can be considered “un-alignable”.  Less 

diverged sequences may still contain regions where the correct alignment can be difficult to 

discern.  See for example two common causes for uncertainty in Figure ‎1.2.  Automation of the 

process as a computer program adds additional challenges.  Even if we could define a scoring 

function to determine the better MSA of any two possible solutions, it is infeasible to search for 

the optimal scoring alignment because the number of possible solutions grows exponentially 
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with the number of sequences.  Formally, the problem has been shown to be NP-hard (Wang 

and Jiang 1994; Just 2001).  Therefore, alignment programs employ heuristic approaches to 

generate a high-scoring MSA, although they cannot guarantee finding the optimal solution. 

 

Figure ‎1.2:  Examples where the correct alignment cannot be confidently decided.  (a) 

Residues in one sequence are equally similar to several candidate homologous positions 

in the other.  (b) Dissimilar stretches can either be aligned as mismatches or interpreted 

as independent insertion or deletion events. 

1.3 Phylogeny reconstruction 

Many of the bioinformatics applications that make use of an MSA do so in the light of a 

phylogenetic tree.  Furthermore, from the time of Charles Darwin, taxonomists and 

phylogeneticists strived to reconstruct the tree of life, describing the evolutionary relationship 

among species in term of the order of their divergence (Figure ‎1.3).   

ACC---GGGTAT  

ACC------TAT  

ACC------TAT  

ACCCGC---TAT  

 

ACCGGGTAT  

ACC---TAT  

ACC---TAT  

ACCCGCTAT  

 

ACCGGTAT  

ACC--TAT  

ACC--TAT  

ACC-ATAT  

 

ACCGGTAT  

ACC--TAT  

ACC--TAT  

ACCA-TAT  

 

(a) (b) 
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Figure ‎1.3:  Charles Darwin’s first sketch of an evolutionary tree from his ''First Notebook 

on Transmutation of Species'' (1837; this image is in the public domain due to the 

expiration of copyright) 

For Darwin and his followers, and until the molecular revolution of the life sciences, 

phylogenies were mainly reconstructed based on morphological similarities among organisms.  

This approach suffers from the difficulty in comparing phenotypes that may reflect complex 

interactions between many genes and different environments.  With the advent of amino acid 

sequencing in the 1970’s (e.g., Goodman et al. 1974) sufficient molecular data became 

available to allow reconstruction of phylogeny directly from observed genotypic differences.  In 

the next three decades, alignments of nucleotide and amino acid sequences were used as the 

principle raw material for phylogenetics, accompanied by the development of methodologies 

to reconstruct phylogenetic trees based on the comparative analysis of aligned sequences.  

Ideally, one may attempt to simultaneously estimate the phylogeny and MSA, although thus far 

such attempts proved unbearably computationally intensive (discussed in Section ‎1.6 below).  
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Therefore, all widely used approaches begin with building an alignment and then feed it as a fix 

input to the tree building algorithm. 

Three major paradigms dominated the field of molecular phylogeny reconstruction:  distance 

based methods, maximum parsimony, and probabilistic methods (maximum likelihood and 

Bayesian analysis).  The first two led the earlier period.  Nowadays, probabilistic methods are 

considered the most accurate.  Distance based methods are still widely used because of their 

computational efficiency. 

Distance based methods are the fastest way to reconstruct a tree from molecular sequences 

because they reduce the information of long sequences into the evolutionary distances 

between all pairs of sequences.  The pairwise distances are then used to build the tree that 

best fits them.  In the two most widely used distance based methods – unweighted pair group 

method with arithmetic mean (Sokal and Michener 1958; Sneath and Sokal 1973) and neighbor 

joining (Saitou and Nei 1987) – the approach is to gradually cluster sequences starting from 

closely related sequences, or “neighbors”, and then move on to the more distantly related until 

the full tree is obtained.  By far, the most widely used method is neighbor joining (NJ), with 

computational complexity of O(n3) for a set of n sequences.  Moreover, NJ has been proved to 

be statistically consistent, that is, as the distance estimation approaches the true distances so 

does the estimated tree approaches the true tree (Atteson 1997).  Therefore, it is the preferred 

choice for quick tree reconstruction.  Furthermore, it is the only feasible choice for analyzing 

thousands of sequences, because more accurate methods suffer from a stronger dependency 
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on the number of sequences.  Various enhancements of the NJ algorithm were proposed (e.g., 

Gascuel 1997; Bruno, Socci, and Halpern 2000; Howe, Bateman, and Durbin 2002; Mailund et 

al. 2006; Sheneman, Evans, and Foster 2006).  These publications offer improvements in terms 

of both accuracy and efficiency.  Mailund et al. (2006) achieved the most efficient NJ-like 

algorithm with a reduced computation time of O(n2). 

Maximum parsimony (MP) was the methodology of choice until the 1980’s (e.g., Holmquist et 

al. 1976; Goodman and Pechere 1977; Baba et al. 1981).  This approach searches for the tree 

topology that requires the least evolutionary events (e.g., number of substitutions) to explain 

the observed variability in the sequences (Eck and Dayhoff 1966).  Efficient algorithms were 

developed for finding the minimum number of events for a given tree (Kluge and Farris 1969; 

Fitch 1971; Sankoff 1975) and heuristics were developed for searching the solution space for 

the MP tree (e.g., Kumar, Tamura, and Nei 1994).  Furthermore, one of the first attempts to 

simultaneously reconstruct the tree and the MSA, a concept that I will further discuss below 

(Section ‎1.6), was based on the MP principle (Sankoff, Morel, and Cedergren 1973; Wheeler 

and Gladstein 1994). 

During the 1970’s and 1980’s several considerable shortcomings of MP became evident.  

Felsenstein (1978) demonstrated that MP is not statistically consistent.  That is, some 

evolutionary trees will be incorrectly reconstructed by MP even if unlimited genetic data were 

available (the sequence length tends to infinity).  Further studies emphasized the implications 

of this problem to a wider range of scenarios, beyond the classical “long branch attraction” 
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scenario (e.g., Kim 1996).  Nevertheless, some publications still claim that MP enjoys 

advantages over other approaches, such as the robustness to heterogeneous evolution, i.e., 

when the evolutionary model and rates may change during the sequences’ evolution 

(Kolaczkowski and Thornton 2004). 

Probabilistic methods grew in popularity during the last two decades and replaced maximum 

parsimony as the leading paradigm.  This shift followed considerable methodological research 

demonstrating their superiority (e.g., Saitou and Imanishi 1989; Hasegawa, Kishino, and Saitou 

1991; Hasegawa and Fujiwara 1993; Tateno, Takezaki, and Nei 1994; Huelsenbeck 1995).  The 

maximum likelihood (ML) approach is based on probabilistic models of sequence evolutions 

and algorithms for efficient computation of the likelihood function L – the conditional 

probability of the sequence data D given a tree T (Felsenstein 1981): 

                                                                                 ‎1-1 

This opened the way for the developing heuristics (as in MP methods) to search the solution 

space for the ML tree (Felsenstein 1989; Strimmer and Von Haeseler 1996; Lewis 1998; 

Huelsenbeck and Ronquist 2001; Guindon and Gascuel 2003; Stamatakis, Ludwig, and Meier 

2005).  Typically, these heuristics start with some initial guess of the tree, which is usually 

acquired via a quick distance based method, and then iteratively try to make small 

modifications of the tree (e.g., “nearest neighbor interchange” or “subtree pruning and 

regrafting” that were previously used for MP tree search) and look for trees with higher 
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likelihood scores until no such improvements can be found (e.g., Guindon and Gascuel 2003; 

Stamatakis, Ludwig, and Meier 2005).  Other approaches include gradual addition of taxa to the 

tree (Felsenstein 1995) and integrating the likelihood scores of all possible quartets of taxa 

(Strimmer and Von Haeseler 1996). 

One of the strengths of probabilistic models of sequence evolution is that they can explicitly 

account for biological phenomena.  For example, models were developed to relieve the 

unrealistic assumption of homogonous evolutionary rate (Yang 1993, elaborated on in Chapter 

‎3) and to account for heterogeneities in the amino-acid replacement process (Lartillot and 

Philippe 2004). 

A Bayesian approach to the search for the most probable tree is an alternative probabilistic 

paradigm.  Bayesian methodology assumes a prior distribution of certain parameters of the 

probabilistic model.  In the example of modeling among-site variation it is common to use a 

gamma distribution as the prior on the site-specific rates (Yang 1993).  For a recent review see 

Pupko and Mayrose (2010).  For a given rate r, the likelihood of the tree can be calculated as 

above.  However, since the rate is not known, we integrate over the prior distribution to 

calculate the posterior probability of a tree: 

                                                                                      
 

 ‎1-2 
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Although a prior distribution over the rates is assumed, its parameters are commonly 

estimated by maximizing the likelihood function.  These methods thus deviate from the 

classical Bayesian approach and are thus called “empirical Bayesian”.  Such algorithms yielded a 

dramatic improvement in the fit of the model to the sequence data (Yang 1994a; Yang, 

Goldman, and Friday 1994). 

In a fully Bayesian approach the prior distribution of model parameters is sampled as well as 

the space of all possible trees (Rannala and Yang 1996).  The most widely used sampling 

technique is Markov Chain Monte Carlo (MCMC), which efficiently samples the posterior 

distribution of trees so that high scoring solutions are sampled more than others (Yang and 

Rannala 1997; Larget and Simon 1999; Huelsenbeck and Ronquist 2001; Huelsenbeck et al. 

2001).  For a review see Holder and Lewis (2003).  This approach integrates over the many 

degrees of freedom in complex, parameter-rich models that the ML approach does not tackle 

well, such as the abovementioned example of heterogeneities in the replacement process. 

1.4 Estimation of confidence in phylogeny 

The inferred tree can be viewed as a statistical parameter that is inferred from the data.  As in 

other statistical inference methods, it is generally required to assess the reliability of the 

inferred tree.  Most commonly confidence scores are assigned to each branch of the tree, 

which corresponds to splitting the tree into two clades.  By far the most widely used approach 

is bootstrap sampling (Felsenstein 1985), which can be applied to any MSA-based phylogeny 

reconstruction method.  The bootstrap is a random sample of columns from the MSA that is fed 
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to the same phylogeny program.  For each sample of columns this procedure results in a 

perturbed tree, where the branching may be somewhat different from the “base” tree 

obtained without bootstrapping.  Typically, 100 such samples are made, producing 100 trees.  

The bootstrap confidence score for each branch in the base tree is computed by counting the 

proportion of bootstrap trees that contain that branch unchanged.  Thus, high scoring branches 

are considered robust to noise in the sequence data, whereas low scoring branches represents 

parts of the tree that cannot be reliably reconstructed based on the phylogenetic signal in the 

data.  Bootstrap sampling of trees is the foundation for the alignment confidence measure 

developed in Chapter ‎5. 

Within the Bayesian paradigm, an alternative confidence measure is available, based on 

calculations of posterior probabilities (Rannala and Yang 1996).  Some studies claimed that the 

Bayesian confidence scores are more statistically justifiable (e.g., Alfaro, Zoller, and Lutzoni 

2003), but others have shown that bootstrap is an unbiased estimate for the Bayesian posterior 

probability (Efron, Halloran, and Holmes 1996), and still others claimed that posterior 

probabilities are too liberal estimates of confidence while bootstrap scores are slightly 

conservative (Suzuki, Glazko, and Nei 2002). 

One difficulty in the Bayesian approach is that the probability space must be evenly sampled by 

methods such as MCMC.  It is difficult to be sure that the sampling is thorough enough, and so 

the maximum posterior solution may be over-confident if some other regions of the probability 

space are under-sampled.  Furthermore, bootstrap sampling enjoys several practical 
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advantages, including its relative efficiency, which can be used with fast polynomial complexity 

algorithms such as NJ, and the easy in which it may be parallelized on multi-core high 

performance computer clusters. 

This thesis does not deal with the comparison between the bootstrap and Bayesian 

approaches.  In general, it may be said that the Bayesian approach offers certain advantages, 

but nevertheless, the bootstrap approach remains a valuable methodology especially when full 

Bayesian estimation is not possible due to its high requirements of computation time.  See 

further discussion in Section ‎1.7‎5 and Chapter ‎5. 

1.5 Progressive alignment:  mutual dependency of alignment and phylogeny 

Knowledge of the phylogeny proves highly valuable to the reconstruction of MSAs.  So much so, 

that virtually all the widely used, state-of-the-art alignment algorithms (e.g., Thompson, 

Higgins, and Gibson 1994; Notredame, Higgins, and Heringa 2000; Katoh et al. 2002; Edgar 

2004; Do et al. 2005; Loytynoja and Goldman 2005) begin with reconstructing a “guide tree”, 

which is used to determine the order of construction of the MSA in a process known as 

“progressive sequence alignment”.  This technique (Waterman and Perlwitz 1984; Feng and 

Doolittle 1987) is a heuristic that aligns pairs of sequences and then pairs of alignments, 

according to the branching order of the guide tree, gradually building up to the full MSA (Figure 

‎1.4).  Each pairwise alignment is computed using a dynamic programming algorithm that 

efficiently finds the highest scoring solution (Needleman and Wunsch 1970).  Theoretically, the 

dynamic programming solution for a pair of sequences can be extended to any number of 
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sequences, but the time complexity of this algorithm is       for   sequences of length  , 

making it infeasible for more than a handful of sequences.  The progressive heuristic is a 

compromise for reasonable accuracy in affordable computation time, but it is a greedy 

heuristic that cannot be expected to find the best scoring solution.  The branching order of the 

guide tree is used to choose the order of pairwise alignments, starting by aligning the closest 

relatives (neighboring leaves) and adding the more distant and diverged sequences last (deep 

branches).   

 

Figure ‎1.4:  An example of progressive sequence alignment.  A guide tree is used to 

determine the order of pairwise sequence alignments.  Initially, neighboring leaves of the 

tree are aligned (A&B, C&D), next pairs of groups of sequences are aligned (AB&CD), and 

finally the four sequences are aligned to the last one (ABCD&E). 

Comparative methodological evaluations consistently demonstrated that algorithms based on 

the progressive approach lead as the most accurate of the computationally feasible approaches 

(e.g., Thompson, Plewniak, and Poch 1999; Raghava et al. 2003; Gardner, Wilm, and Washietl 
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2005; Nuin, Wang, and Tillier 2006).  See section ‎1.6 below for a description of these evaluation 

assays.  These studies also highlight the considerable error rate in MSAs produced by the best 

algorithms.  For example, Nuin, Wang, and Tillier (2006) show that typical sequence datasets 

often lead to an excess of 20% badly aligned residues in the MSA.  Such high error rates 

motivated a series of improvements on the basic progressive alignment methodology, since its 

conception in 1987.  Thompson, Higgins, and Gibson (1994) suggested several improvements 

including weighting sequences according to their divergence, varying the amino acid 

substitution matrix during the progressive alignment, and varying the gap penalties in 

hydrophilic regions that are probable loops in the protein structure.  The significant 

improvement in accuracy made CLUSTALW the most popular MSA algorithm during the 

following decade.   

Perhaps the most common improvement on the basic progressive scheme is iteration of tree 

building and progressive alignment (Figure 1.5, e.g., Corpet 1988; Katoh et al. 2002; Edgar 

2004; Loytynoja and Goldman 2005).  The rationale behind iterations stems from the mutual 

dependency of progressive alignment and phylogeny reconstruction – that an alignment of 

improved accuracy can be used to construct a tree of improved accuracy and vice versa.  Of 

course, one must start from a tree built without an MSA or an MSA built without a tree.  The 

common solution to this circular problem is to build a NJ or UPGMA tree based on distances 

calculated from pairwise alignments.  Subsequent iterations recalculate the distances based on 

an MSA.  This approach is further investigated in Chapter ‎4. 
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Figure ‎1.5:  Circular dependency of alignment and phylogeny.  The mutual dependency 

of phylogeny reconstruction MSA is commonly addressed by an iterative scheme.  The 

first tree is built based on pairwise alignments, which are less accurate then subsequent 

MSAs. 

As a greedy heuristic, the progressive approach suffers from a major pitfall – that early 

mistakes in pairwise alignments cannot be rectified with the addition of information from other 

sequences in latter stages.  Therefore, a common practice is post-processing of the MSA known 

as “iterative refinement” (Gotoh 1996).  The alignment is iteratively divided to two groups of 

sequences corresponding to two subtrees of the phylogeny, which are realigned without 

changing the alignment within each group.  Others suggested limiting errors in each greedy 

step using consistency scores of the progressively build MSA with a preprocessed library of 

pairwise alignments (Notredame, Higgins, and Heringa 2000). 
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A profound correction for the widely used implementation of the progressive scheme was 

proposed by Loytynoja and Goldman (2005) and implemented in their algorithm PRANK.  

Contrary to other progressive algorithms, PRANK distinguishes between insertion and deletion 

events during the process of climbing down the tree from the leaves towards the root.  All 

other algorithms treat a gap in the alignment as an “indel” (insertion or deletion) without 

making this distinction.  The distinction is important for the handling of a gap-containing 

column in the deeper branches of the tree:  If a gap represents a character that was inserted in 

a certain lineage then it should not be aligned to any other character that was inserted in an 

independent lineage.  On the other hand, if the gap represents a deletion then the same 

position may be aligned to characters in sister lineages and may be independently deleted 

elsewhere in the phylogeny.  Although at a considerable computational cost, this correction 

eliminates a dramatic bias towards excess deletions over insertions and the alignment of non-

homologous residues in the traditional implementations of progressive alignment (Loytynoja 

and Goldman 2008).  This is an inherent and fundamental flaw in the broadly used 

implementation of the progressive alignment technique.  PRANK corrects this flaw in an 

approach entitled “phylogeny-aware gap placement” by Loytynoja and Goldman in their later 

Science paper (2008) where they demonstrate dramatic reduction of such errors compared to 

all other state-of-the-art progressive algorithms.   
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1.6 Performance evaluation 

Despite all the above, many of the typical alignment problems continue to challenge all state-

of-the-art algorithms.  This is apparent from evaluation studies of alignment accuracy (e.g., 

Thompson, Plewniak, and Poch 1999; Raghava et al. 2003; Gardner, Wilm, and Washietl 2005; 

Nuin, Wang, and Tillier 2006).  Such studies attempt to estimate the proportion of aligned 

residues that are correctly aligned – a critical quality assessment tool in the field of alignment 

algorithms.  There is no straightforward way to do this because one needs to compare the 

reconstructed alignment to the “true” one, and we can never ascertain with absolute 

confidence the true alignment of divergent biological sequences.  To do so implies full 

knowledge of the evolutionary history of substitutions, insertions, and deletions.  Nevertheless, 

there are two commonly used “oracles” for obtaining knowledge of the “true” alignment, 

which are also used for performance evaluation in Chapter ‎5 of this disertation. 

Simulations:  Simulated evolution allows full knowledge of the true evolutionary history, 

including the tree and each substitution, insertion, and deletion event.  Therefore, the true 

MSA and the tree can be compared to the reconstructed ones for evaluation of both alignment 

and phylogeny reconstruction algorithms.  The weakness in this approach is that the 

simulations are based on simplified models of evolution that may not adequately mimic the 

evolution of real biological sequences.  Thus, efforts have been made to develop richer and 

more realistic simulators (Stoye, Evers, and Meyer 1998; Nuin, Wang, and Tillier 2006; Fletcher 

and Yang 2009). 
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Structural homology:  Benchmarks of homologous proteins with solved tertiary structures can 

be used to generate sequence alignments that are based on structural alignments (Thompson, 

Plewniak, and Poch 1999; Raghava et al. 2003; Thompson et al. 2005; Van Walle, Lasters, and 

Wyns 2005).  A similar approach was also applied for structural RNA sequences (Gardner, Wilm, 

and Washietl 2005).  Such alignments are considered more accurate than pure sequence-based 

alignment because homologous structures tend to remain similar for significantly diverged 

sequences.  For example, completely different sequences occupying the same alpha helix in 

two homologous protein structures will be aligned although no similarity remains at the 

sequence level.  An important distinction between these alignments and simulated alignments 

is that a pair of aligned residues is not necessarily homologous in the sense that they have 

evolved from an ancestral residue strictly through substitutions.  They may have arisen through 

a series of insertions and deletions, eventually occupying the same position in the two 

homologous structures.  Furthermore, a weakness of the structural alignment “oracle” is that 

usually only core secondary structure elements can be reliably aligned, while loop regions are 

often un-alignable. 

Both of the above approaches generate a reference “true” MSA that is re-aligned using the 

tested alignment algorithm.  The most commonly used measures for agreement of the 

reconstructed MSA with the reference are the column score (CS), which is the percentage of 

alignment columns in the reference alignment that were accurately reconstructed, and the 

sum-of-pairs score (SP), which is the percentage of pairs of aligned residues in the reference 
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MSA that are similarly aligned in the reconstructed MSA (Carrillo and Lipman 1988; Thompson, 

Plewniak, and Poch 1999).  Note however that these scores measure type I errors – a pair of 

residues that should be aligned to each other are not aligned (they may be aligned to other 

residues or not aligned to any at all).  They do not measure type II errors – residues that should 

not be aligned.  That is, over-alignment is not penalized.  This point is significant for assessing 

the correction by Loytynoja and Goldman (2008) described above, because they correct a bias 

for under-estimation of insertions that leads to over-alignment. 

Simulated sequence benchmarks also make available a reference “true” phylogeny, which 

allows assessing the accuracy of phylogeny reconstruction (used in Chapter ‎3).  The 

reconstructed phylogeny is commonly compared to the reference using the Robinson-Foulds 

distance (Robinson and Foulds 1979).  Every branch of a tree defines a partition or “split” of the 

leaf labels into two subgroups.  Every possible topology defines a set of partitions.  Thus the 

Robinson-Foulds distance between two possible topologies is the proportion of common 

partitions (which correspond to similar branches) between the two topologies.  This distance is 

commonly used to measure the accuracy of phylogeny reconstruction by comparing the 

reconstructed topology to the reference “true” topology (e.g., Stamatakis, Ludwig, and Meier 

2005).  For real sequence data, where the true topology can never be know with certainty, it is 

common to use the likelihood score of the reconstructed tree (see Section ‎1.3 above) to 

compare several algorithms. 
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1.7 Simultaneous estimation of alignment and phylogeny 

An important alternative to the above methodologies of the progressive alignment paradigm is 

a Bayesian estimation of alignment, analogous to the Bayesian approach to phylogeny 

reconstruction (Section ‎1.3).  An attractive advantage of this approach is the possibility to 

combine alignment and phylogeny in a unified estimation scheme under a joint probabilistic 

model of sequence evolution.  Joint Bayesian estimation of alignment and phylogeny is done 

using the MCMC sampling described above, using a probabilistic model of sequence evolution 

describing substitution, deletion, and insertion events (Thorne, Kishino, and Felsenstein 1991; 

Thorne, Kishino, and Felsenstein 1992; Hein 2001; Lunter et al. 2005; Redelings and Suchard 

2005). 

This thesis will not deal with such fully Bayesian methods, however, this alternative should be 

considered here because it offers important advantages over the greedy progressive method.  

The Bayesian approach is a rigorous statistical approach to sampling the solution space.  

Therefore, it is expected to yield more accurate reconstruction than greedy algorithms.  In fact, 

the small number of studies that make use of full Bayesian reconstruction clearly demonstrate 

its accuracy advantage.  The sole reason to continue using progressive algorithms is their 

advantage in terms of computational efficiency.  In most practical alignment problems, the 

Bayesian approach is infeasible.  For example, the README page of the Bayesian alignment 

algorithm BAli-Phy (Suchard and Redelings 2006) recommends “using 12 or fewer taxa in order 

to limit the time required…” (http://www.biomath.ucla.edu/msuchard/bali-

http://www.biomath.ucla.edu/msuchard/bali-phy/README.html


22 

 

phy/README.html).  Even for datasets of few taxa, when genome-wide analyses are 

concerned, the computational burden of Bayesian algorithms may not be affordable.  

Therefore, most of the current comparative sequence analysis studies cannot afford the 

computation time required for a full Bayesian analysis.  At least in the near future, it is unlikely 

that the Bayesian approach will be used in more than a small fraction of comparative genetic 

research.  Undoubtedly, the continued exponential growth in computer power will raise the 

threshold on feasible dataset size and make Bayesian methods a more relevant alternative. 
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2 Research outline:  investigating the mutual dependency of alignment 

and phylogeny 

In my studies I have investigated the existing methodologies for MSA and phylogeny 

reconstruction, and the mutual dependency between the two problems.  This investigation led 

to the development of novel methodologies addressing the notorious error-proneness of both 

tasks.  These methods were published in three leading peer-reviewed journals for the field of 

computational biology.  This work that started from the development of improved phylogenetic 

tree reconstruction, followed by an investigation of the mutual dependency of phylogeny and 

alignment, which finally led to the development of a novel measure for alignment confidence 

based on the effect of the guide-tree in progressive sequence alignment. 

2.1 Iterative phylogeny reconstruction 

Chapter ‎3 (presented in ECCB 2006 and published in Bioinformatics) describes a hybrid 

methodology integrating advance probabilistic evolutionary models into distance-based 

methods for phylogeny reconstruction.  The hybrid combines the accuracy of probabilistic 

approach with the efficiency of distance-based methods.  Distance-based methods rely on 

evolutionary distance estimation and are sensitive to errors in such estimations.  In this study, 

an advanced evolutionary model that accounts for among-site rate variation, which was proven 

of being superior for the purpose of phylogeny reconstruction (Tateno, Takezaki, and Nei 

1994), was integrated into the estimation of evolutionary distances.  Rate variation is estimated 

within a Bayesian framework by extracting information from the entire dataset of sequences, 
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unlike classical distance-based methods that can only use one pair of sequences at a time.  The 

accuracy of a cascade of distance estimation methods was evaluated, starting from commonly 

used methods and moving towards the more sophisticated novel methods.  A significant 

improvement in the accuracy of distance estimation by the novel method over the commonly 

used ones was demonstrated using both real and simulated protein sequence alignments.  An 

implementation of this method is freely distributed as part of the open-source SEMPHY 

package. 

The strengths of the hybrid method facilitated two applied collaborative projects, in bacterial 

phylogeny and the protein phosphatase 2C superfamily.  The first was an investigation into the 

positioning of thermophilic bacteria at the root of the tree of life (Section ‎3.4) which I 

presented in the Annual Meeting of the Society of Molecular Biology and Evolution (SMBE).  The 

second was the investigation of the phylogeny of the protein phosphatase 2C superfamily 

(Appendix A), which was published in the Journal of Molecular Evolution. 

2.2 Iterative phylogeny and alignment 

Having an improved phylogenetic accuracy led me to investigate the relationship between the 

accuracies of tree and alignment.  I investigated the hypothesis that improved accuracy of the 

guide tree will improve the accuracy of the subsequent MSA.  I was successful in demonstrating 

a significant effect of guide tree accuracy in certain scenarios.  Previous studies have concluded 

that the guide tree bears no statistically significant effect on the accuracy of MSAs (e.g., 

Nelesen et al. 2008).  However, these studies were limited to alignments of up to 100 
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sequences.  Since the complexity of the MSA and the potential for error increases with the 

number of sequences, I hypothesized that the guide tree becomes more important for larger 

alignments of hundreds of sequences.  Indeed, this effect was significant in protein datasets 

from 400 to 1,000 sequences.  Unfortunately, this result was published at the time by Liu et al.  

(2009) before my manuscript was completed.  My unpublished results on this effect are 

described in Chapter ‎4. 

2.3 Relay of uncertainty 

An intriguing observation from this study led to the next two chapters of this thesis (recently 

published in Molecular Biology and Evolution and Nucleic Acid Research).  Despite failure to 

improve the accuracy score of the alignment in small datasets, I observed that changes in the 

guide tree gave rise to dramatic changes in the MSA, which were not reflected in significant 

changes in the accuracy score.  I hypothesized that these changes reflect uncertainty in the 

alignment rather than accuracy improvement.  Chapter ‎4‎5 demonstrates that this is indeed the 

case – that uncertainties in the guide tree are a major source of uncertainty in the alignment.  I 

developed this insight into a scoring method that assigns confidence scores to each position of 

the MSA.  Simulated and real protein benchmarks were used to show that these scores 

accurately identify the large majority of alignment errors. 

The ability to identify the badly aligned parts of an MSA is a valuable tool for a wide range of 

comparative sequence studies, wherein such errors may lead to artifacts in the downstream 

analysis.  Thus, Chapter ‎6 describes the implementation of this method in GUIDANCE, a user-



26 

 

friendly web server, which is easily accessible for the wide molecular biology community.  The 

utility of GUIDANCE was demonstrated by re-analyzing the heavily studied Vpu protein of HIV-

1, an example for a fast evolving sequence that is challenging for alignment.  GUIDANCE 

enables identification of unreliable alignment regions, filtering of un-alignable sequences, and 

subsequent dramatic reduction in alignment uncertainty.  Together, these last two chapters 

present a novel methodology, previously unavailable for the scientific community, that is 

expected to empower better usage of alignments in a wide range of comparative sequence 

studies.   
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3 Phylogeny reconstruction:  increasing the accuracy of pairwise 

distance estimation using Bayesian inference of evolutionary rates 

This chapter is based on a published manuscript: 

Ninio, M.*, Privman, E.*, Pupko, T., and Friedman, N.  2007.  Bioinformatics 23:  e136-e141. 
* Equal contribution 

3.1 Introduction 

Open questions in phylogenetics include reconstruction of early speciation events in the 

mammalian species tree (e.g., Steppan, Storz, and Hoffmann 2004; Murphy et al. 2007) or more 

ancient events as far back as the root of the tree of life (e.g., Brown and Doolittle 1995; 

Forterre and Philippe 1999).   Other phylogenies describe series of duplications of gene 

families, e.g., the hemoglobin family (Hardison and Miller 1993) or the kinase super-family that 

includes more than 500 putative kinases in the human genome (Manning et al. 2002).   

Reconstruction of such phylogenies and resolving the many duplication events may shed light 

on the functional specialization in sub-families of genes. 

The size of the analyzed dataset may vary significantly, both in the length of the sequences and 

in their number.  Species trees may be based on the sequencing of a single protein of several 

hundreds of amino acids, or on several genes, or even on entire genomes.  A dataset that 

includes paralogous sequences may reach large numbers of sequences.  For example, a study of 

“kinome” evolution in fully sequenced mammalian genomes will encompass thousands of 

sequences.  This range of practical situations should be considered when phylogeny 

reconstruction methods are discussed. 
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Different approaches to phylogeny have their own strengths and weaknesses, as reviewed in 

Section ‎1.3 above.  ML and Bayesian methods have been argued to be superior in terms of 

accuracy and statistical justification but they become computationally infeasible when dealing 

with large datasets because the tree search space, i.e., the number of possible trees, grows 

exponentially with the number of sequences (Felsenstein 2004).  This problem becomes 

increasingly aggravating with the rapid accumulation of molecular sequence data.  In many 

molecular studies the subject gene or gene family of interest may lead to hundreds and even 

thousands of homologous sequences in the databases.  Concomitantly, the field of molecular 

evolution has produced increasingly sophisticated methods for phylogenetic analysis, which are 

more computationally intensive.  These combined advances challenge computational feasibility 

of contemporary studies of molecular evolution. 

Contrary to probabilistic methods, the efficiency of distance-based methods is polynomial in 

terms of the number of sequences (see Section ‎1.3).  This advantage in computation time 

makes them essential for dealing with large datasets.  The importance of distance methods is 

not only as a faster, less accurate alternative to ML methods, but also in providing a good 

starting point of a heuristic search for the ML tree (e.g., Friedman et al. 2002; Guindon and 

Gascuel 2003).  Clearly, if the distance method could be improved then the ML search could be 

faster, and give better results. 

  



29 

 

Distance-based methods are made up of two steps: 

1) Pairwise distance estimation between all possible pairs of sequences in the dataset 

2) Tree reconstruction based on the distances (this stage is blind to the original sequences) 

These are two modular stages - any method for distance estimation can be used with any 

distance-based method for tree reconstruction.  While several distance-based tree 

reconstruction methods have been developed, the initial step of distance estimation received 

scant attention.  Indeed, the simplistic Jukes-Cantor (JC) method (1969) is still common practice 

for distance estimation, in spite of its oversimplifying assumption that all types of substitutions 

have equal probabilities.  Great efforts have been invested in improved modeling of sequence 

evolution for use with ML methods.  These advanced probabilistic models should also be used 

for distance estimation.  As the following study demonstrates, previously published distance 

methods are still inadequate in terms of both error and bias. 

We present a novel approach to distance estimation with increased accuracy, thereby 

improving phylogeny reconstruction.  Our method is an adaptation of advanced probabilistic 

models from the ML paradigm to a distance-based approach, making their application to many 

thousands of sequences computationally feasible.  Thus, the analysis of large datasets may now 

benefit from the improved accuracy of these refined models.  The key idea underlying our 

hybrid methodology is to estimate model parameters from the entire dataset, and to use them 
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in each pairwise distance estimation.  We show that the novel method significantly improves 

the accuracy of phylogenetic tree reconstruction. 

3.2 Methods for maximum likelihood distance estimation 

The evolutionary distance d between a pair of sequences is defined as the average number of 

substitutions per sequence site.  This measure is related to the time that passed and the rate of 

substitutions.  ML methodology may be used for distance estimation in a similar fashion to 

finding the ML tree:  The maximum likelihood estimate (MLE) for the distance (  ) between two 

sequences (A and B) is the distance that maximizes the likelihood of the distance, which is the 

conditional probability of the sequence data, given a distance d and a model of sequence 

evolution M (Zharkikh 1994): 

                                                                             ‎3-1 

The model M is a probabilistic model that describes the evolution of biological sequences.  All 

the distance estimation methods discussed in this chapter will be presented as ML estimates 

under a specific evolutionary model.  These models range from the simple JC model to complex 

models that strive to capture the nature of evolution of protein-coding genes as accurately as 

possible.  This section describes the cascade of ML methods of increasing complexity, 

culminating in the novel methods we propose. 
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3.2.1 Probabilistic models of sequence evolution 

Generally, ML methods in phylogeny use continuous time Markov models (Karlin and Taylor 

1975) that define for any pair of aligned characters a and b the probability         of the 

substitution from a to b in an evolutionary distance d.  Additionally, they define the initial 

character probabilities   .  Under the simplifying assumption that sites evolve independently 

and for models that satisfy reversibility                       the likelihood of the 

distance can be written as:  (Felsenstein 2004) 

                                                                     
    

    ‎3-2 

Where    and    are the i-th pair of aligned residues out of a total S positions in the sequence 

alignment.   

The simplest model possible is the JC model that assigns equal probabilities for all types of 

substitutions (Jukes and Cantor 1969).  This over-simplifying assumption was subsequently 

relieved by models that allow variable          probabilities.  Such models define a rate matrix 

Q where          is the rate of replacements from character a to b.  This matrix is used to 

calculate the          probabilities:  (Durbin et al. 1998) 

                                                                                   ‎3-3 
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The exponent of the matrix dQ is usually computed using the eigen vector decomposition of Q. 

This likelihood function is maximized according to Equation 3-1 in order to find the ML 

distance.   

Such models have been initially designed for nucleotides (e.g., Kimura 1980; Yang 1994b).  For 

amino acids, the larger alphabet size (20 instead of 4) requires a significantly larger number of 

parameters in the model.  Therefore, empirical replacement matrices were calculated using 

large protein datasets.  In this work we concentrate on amino acid sequences, for which the 

computational challenge is greater, although our novel methods can be equally applied to DNA 

sequences.  Specifically, we use the JTT matrix (Jones, Taylor, and Thornton 1992).  

The most significant oversight of this model, which is used by current distance-based phylogeny 

methods, is the assumption of equal replacement rates at all sequence sites.  In this chapter, 

we shall refer to the method that uses this model the homogeneous rates method.  However, 

evolutionary rates vary considerably among sites, due to non-uniform selection forces (Yang 

1996). 

3.2.2 Among site rate variation  

Models that explicitly take into account among-site rate variation (ASRV) were shown to be 

statistically superior to the homogeneous models (Yang 1994a) in ML phylogeny 

reconstruction.  ASRV is modeled by assuming that each site i in the sequence has a different 

rate,   , relative to the average rate over all sites.  Thus, a site of rate 2 evolves twice as fast as 
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the average.  This is equivalent to multiplying the distance by the rate in the likelihood 

calculation for each site: 

                                                                         
      

 
    ‎3-4 

This equation assumes that rates are known.  Since this is not the case, two approaches can be 

taken.  One approach is to estimate the rate    similarly to the distance, under the ML principle.  

However, a Bayesian approach gives better performance (Mayrose et al. 2004).  A prior 

distribution of rates      is assumed.  The likelihood is then computed by averaging over all 

possible rates:   

                                                                   
       

 

   
 
    ‎3-5 

The most common choice for      is the gamma distribution with the mean set to one (Yang 

1993).  Such gamma density function has one free parameter α that allows for different 

distribution shapes.  The distance and the α parameter can be estimated simultaneously for 

each pair of sequences, using ML.  We shall refer to this method as the pairwise α method.  For 

lack of analytic solution, a discrete approximation of the gamma distribution is commonly used 

(Yang 1994a).  Here we use 32 discrete, equal-probability bins, whose means are calculated 

based on the value of α. 
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3.2.3 Iterative inference of model parameters 

The pairwise α method estimates the α parameter for each pair of sequences independently.  

However, the variability of rates in a protein is generally common to all sequences across a 

given MSA.  Thus, there is no reason to estimate the rate parameters for each pair of 

sequences.  Moreover, such estimation of many parameters from scant data is likely to result in 

high errors (Figure ‎3.1a).  It would be preferable to use all sequences in order to estimate the 

rate parameters globally.  However, such estimation requires knowledge of the phylogenetic 

tree, which we have not yet reconstructed.  This kind of circular situation calls for an iterative 

process of optimization.  Sullivan et al. (2005) studied iterative parameter optimization in the 

context of ML tree search.  Here we suggest a similar approach for distance-based tree 

reconstruction.  The iterative scheme allows for an “ML-NJ” hybrid, consisting of an ML 

optimization stage and an NJ tree reconstruction stage (or any other distance-based method).  

In each iteration, global ASRV information is extracted from the entire MSA using the tree 

reconstructed in the previous iteration.  This “global information” is then used to re-estimate 

the pairwise distances more accurately, and then re-build the tree (Figure ‎3.1b).  
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Figure ‎3.1:  Utilizing the entire MSA to estimate the variation of rates among sites.  (a) 

When looking only at the first two sequences of this simple example, both sites of the 

alignment are identical and there is no reason to think that they evolve with different 

rates.  However, when all seven sequences are used, we can deduce that the rate of the 

second site is larger than that of the first one.  (b) The proposed iterative approach that 

utilizes rate information from all sequences to improve distance estimation. 

We propose three alternatives for the iterative estimation of ASRV parameters: 

 Iterative α:  Initial pairwise distances are estimated using the homogeneous rates 

method, and a tree is reconstructed.  This tree is used to infer α, which is then used to 

improve the estimation of the pairwise distances.  These iterations are repeated until 

the likelihood converges. 
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 Iterative rates:  This method uses the evolutionary rate at each position as the “global 

information”.  The MLEs of these rates are iteratively estimated, and then used to 

recalculate the distances by maximizing Equation 3-4.  This method captures more 

information about the ASRV than the iterative α method. 

 Iterative posterior:  A posterior rates distribution is estimated for each site rather than 

relying on a single estimate of the ML rate.  This distribution is then used in Equation 3-

5 instead of the prior distribution     .  In the discrete approximation that is used here 

the posterior probability of each rate category is calculated for each site. 

3.3 Evaluation of the distance estimation methods 

The performance of the different methods was evaluated in three comparative studies.  The 

results presented here are for the five methods summarized in  

Table ‎3.1. 

Table ‎3.1:  The distance estimation methods used in the evaluation studies 

Name Evolutionary model 

Homogeneous rates No rate variation 

Iterative α Independent estimation of α for each sequence pair 

Iterative α Global estimation of α 

Iterative rates Global estimation of the ML rate at each site 

Iterative posterior Global estimation of the posterior distribution of the rate at each site 
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3.3.1 Reconstructing trees from protein sequence alignments 

The ultimate goal of improving distance estimation is to increase the accuracy of the 

reconstructed tree topology.  Therefore, the accuracy of reconstruction using the novel 

methods was evaluated both for real and simulated protein sequences.  We used the NJ 

method for tree reconstruction (Saitou and Nei 1987), which is the most popular distance-

based method (see Section ‎1.3), although our novel distance estimation methods can be 

equally used with any distance-base method. 

Table ‎3.2:  Tree reconstruction using different distance estimation methods 

 Pairwise  
α 

Iterative 
rates 

Iterative   
α 

Iterative 
posterior 

ΔLL per position†  -0.0655 +0.0151 +0.0077 +0.0177 

Improved topology‡  7% 31% 32% 44% 

 

† The average difference in the log-likelihood per position scores compared to the homogeneous rates 

method. 

‡ The proportion of trees for which there was a difference in the topology and an improved likelihood 

compared to homogeneous rates.  

We used a dataset of 84 protein MSAs that was composed by Aloy et al. (2001).  For each MSA, 

trees were reconstructed by the hybrid ML-NJ, using each of the five different distance 

methods.  We compared the trees in terms of their log-likelihood scores under the gamma 

ASRV model.  Such comparison might be affected by differences in branch length estimation 

under the different models.  Therefore, branch lengths and α optimization was performed on 

the fixed tree topologies that were constructed by NJ.  Each log-likelihood score was divided by 

the length of the MSA to produce the average log-likelihood score per position.   
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Table ‎3.2 lists the differences between the score of each method and the score of the 

homogeneous rates method, which is used as a reference.  The second line indicates the 

percentage of MSAs for which there was a difference in the tree topology that resulted in 

improved likelihood, compared to the homogeneous rates method.  Compared with this 

reference, the pairwise α method produces trees of lower likelihood.  On the other hand, all 

three iterative methods improve the average likelihood scores.  The iterative posterior method 

achieved the best results, with an average improvement of 0.0177 log-likelihood points per 

position and an improved topology for 44% of the MSAs.  We used simulation studies to further 

investigate this pattern. 

3.3.2 Reconstructing trees from simulated multiple sequence alignments 

Accuracy of tree reconstruction from real protein sequences can only be compared in terms of 

the likelihood of the trees, since the true phylogeny is not known.  For this reason we applied 

the different methods to protein MSAs that were simulated according to a known tree, and 

evaluated their accuracy by comparing the reconstructed tree to the original “true” tree.  We 

used ten trees that were reconstructed by the homogeneous rates method in the previous 

section as the basis for the simulated MSAs.  Thus, these simulations represent several tree 

topologies of real phylogenies.  We chose MSAs with a number of sequences around 50. 

The gamma-ASRV model was used to simulate sequence evolution according to those tree 

topologies.  The simulations were repeated for ten values of α:  0.1 (highly variable rates), 0.2, 

0.5, 0.7, 1.0, 1.3, 1.6, 2.0, 2.5 (relatively homogeneous rates).  For each α, a vector of 1000 
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rates was sampled from the gamma distribution.  Each of the ten trees was used with each of 

the ten rate vectors to simulate an MSA of 1000 columns.  This procedure was repeated ten 

times, resulting in ten MSAs for each tree and for each α value, a total of 1,000 simulated 

MSAs.  Each distance method was used (in the context of the ML-NJ hybrid) to reconstruct a 

tree from each MSA and the resulting trees were compared to the original “true” tree that was 

used to simulate the MSA. 

The performance of the five methods was evaluated in terms of log-likelihood scores (as above) 

and in terms of the topological distance between the inferred and the original tree.  The later is 

measured by the percentage of splits or branches that both trees agree on, known as the 

Robinson-Foulds distance (Robinson and Foulds 1979, see Section 1.6).   

Figure ‎3.2 plots these two accuracy measures as a function of the α value that was used in the 

simulations.  Both scoring measures agreed on the ranking of the five methods:  iterative 

posterior > iterative rates > iterative α > homogeneous rates > pairwise α.  Paired t-tests 

indicate that these differences are highly significant (p-value < 10-5 for all comparisons). 

The results for the simulated MSAs agree with the pattern that was observed for the real 

protein sequences.  The differences in the log-likelihood per position are also comparable.  An 

interesting observation is that pairwise α performs especially badly for simulations with 

extreme values of α, and is therefore worse than homogeneous rates.  This is probably the 

result of large errors in the α estimates, which are based on two sequences only.  



40 

 

 

 
Figure ‎3.2:  Accuracy of tree reconstruction using different distance estimation 

methods.  Accuracy is plotted vs. the α value that was used in the simulations (in log-

scale).  (a) The difference in the log-likelihood per position of the reconstructed tree, 

compared to the true tree.  (b) The percentage of split agreement with the true tree.   
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Figure ‎3.3:  Percentage of correctly reconstructed splits vs. the corresponding branch 

length.  The curves were created using the LOWESS function (locally weighted scatter 

plot smooth) in MATLAB. 

Compared to the commonly used homogeneous rates method, the iterative posterior method 

improves the log-likelihood score by 0.02-0.05 points per position, depending on α.  In terms of 

the topological accuracy of the tree, the percentage of correctly reconstructed splits is 

improved by 2-6%, depending on α.  A larger improvement is evident for α values less than 1.  

Not surprisingly, this result shows that the novel method will be especially significant for 

proteins with large rate heterogeneity.  The improvement in correct split reconstruction is 

usually very valuable, as we observed that many of the longer branches are easily 

reconstructed with any distance estimation method, and a relatively small number of short 
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branches is commonly the more challenging part of the phylogeny.  This pattern is plotted in 

Figure ‎3.3.  The largest impact is on branch lengths around 0.01, where the proportion of 

correctly reconstructed splits is improved by 20%. 

3.3.3 Evaluation of the accuracy of distance estimation on pairs of sequences 

The evaluation of tree reconstruction above clearly shows the superiority of the iterative 

methods.  However, it is interesting to understand how is the improvement in the accuracy 

affected by different factors, such as the pairwise distances and the α parameter.  For example, 

improvements in the accuracy for relatively distant pairs of sequences might be more 

significant than for close pairs.  In addition, the different methods may vary in the extent of 

their bias in distance estimation.  Therefore, we used simulations of pairs of sequences to study 

the effects of these factors.  We investigated the error and the bias by comparing the 

estimated distance with the original distance that was used in the simulation. 

The same protocol that was used to simulate MSAs was adapted to simulate pairs of sequences 

1,000 amino acids long.  One thousand pairs were simulated for each combination of the ten 

different α values and ten different evolutionary distances between 0.01 and 1.5.  In total, 

100,000 pairs of sequences were simulated.  For the iterative methods we used the previously 

simulated MSAs in order to estimate the required “global information”, i.e., the global α 

parameter, and for each site - the ML rate and the posterior distribution of the rate.  For each 

pair we used an MSA that was simulated with the same rates vector, so that the new sequence 

pair can be treated as though it belongs to the same dataset. 
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The accuracy of the five distance estimation methods was evaluated on these simulations.  In 

addition, a sixth method (labeled true rates) was added as a frame of reference.  This method is 

similar to the iterative rates method, except it was given the true rates that were used to 

simulate the sequences instead of the MLEs of the rates.  This information is obviously not 

available for real proteins.  It is used here in order to demonstrate the limit of the accuracy of 

this class of ML methods, when given the most accurate “global information” possible.   

The results were analyzed in terms of the error and the bias in distance estimation.  The 

relative mean square error (RMSE) and the relative mean error (RME) were used to measure 

the error and the bias respectively: 

                                   
        

     
 
 

                        
        

     
  ‎3-6 

3.3.3.1 Accuracy as a function of the evolutionary distance 

In Figure ‎3.4 the RMSE and RME of each method are plotted as a function of the true distance 

by which the sequence pairs were simulated.  The results are shown for simulations with an α 

value of 0.7. 
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Figure ‎3.4:  Error and bias of different distance estimation methods as a function of the 

true distance.  Sequences were simulated with α=0.7.  Each data point is an average 

based on 1,000 independent sequence pairs.  (a) RMSE as a measure of the error.  (b) 

RME as a measure of the bias. 
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The improved accuracy of the novel iterative methods is evident from Figure ‎3.4a, mainly for 

large distances.  It seems that only for large distances, where many sites undergo multiple 

replacements, there is a significant advantage to the more refined models.  For small distances 

most methods produce very similar errors.  For distances larger than 0.2 all the ASRV methods 

are significantly more accurate than the homogeneous rates method.  The major contributing 

factor to the inaccuracy of homogeneous rates is probably its considerable bias for 

underestimation (Figure ‎3.4b), which increases dramatically with the distance. 

Among the ASRV methods, the iterative methods that use “global information” are significantly 

more accurate than the pairwise α method that does not.  Again, we attribute this result to the 

insufficiency of the information in two sequences for accurate estimation of ASRV parameters.  

Interestingly, there is a noticeable bias for overestimation (over 10 percent) in the pairwise α 

method, for both small and very large distances.  The iterative methods, on the other hand, do 

not display a significant bias.  The iterative posterior method seems to be especially unbiased. 

The accuracy of all methods never exceeds that of the true rates method, as expected for the 

optimal “global information”.  Surprisingly, even for very large distances, the three iterative 

methods produce RMSE values that are no more than 1.5 times larger than those of the true 

rates reference.  In general, the iterative posterior method is more accurate than the other two 

methods.  Its advantage is especially noticeable for large distances, where its error is almost 

equal to the gold standard set by true rates. 



46 

 

It is worthwhile to note the effect of the improved accuracy of pairwise distances on the 

successful reconstruction of tree topology.  The significant improvement in distance accuracy 

was for distant pairs (distances larger than 0.2), while the improved reconstruction was mainly 

in the shortest branches of the trees (of length around 0.01, Figure ‎3.3).  Evidently, the 

accurate estimation of large pairwise distances is essential for resolving difficult splits that 

correspond to short branches.  This effect is probably due to distant pairs of sequences 

connected by a path in the tree that includes very short branches.  The large pairwise distances 

are used by NJ to resolve those internal branches. 

3.3.3.2 Accuracy as a function of α 

When ASRV models are applied to protein sequences the estimated α values typically range 

between 0.5 and 3.0.  In order to test the effect of the degree of rate variation on the accuracy 

of the distance estimation methods we plotted the error and the bias against α.  Figure ‎3.5 

presents the results for a distance of 1.0, which is large but not uncommon.  At most of the 

biologically relevant α values the three iterative methods are clearly more accurate than the 

simpler methods.  However, at α values of 0.5 and smaller the iterative posterior and the 

iterative rates methods become less accurate, while the iterative α method remains nearly as 

accurate as the true rates reference. 
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Figure ‎3.5:  Error and bias of different distance estimation methods as a function of α.  

Sequences were simulated with a pairwise distance of 1.0.  Each data point is an average 

based on 1,000 independent sequence pairs.  (a) RMSE as a measure of the error.  (b) 

RME as a measure of the bias. 
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This increased error is correlated with a bias for underestimation (Figure ‎3.5b).  We 

investigated the cause of this bias, finding that it was preceded by underestimation in the 

branch lengths of the trees that were reconstructed from the simulated MSAs.  The bias of the 

ML estimation of the branch lengths at small α values was never reported before.  This is an 

interesting and important result in itself, which merits further investigation, as it surely affects 

any other evolutionary analysis that makes use of the branch lengths of trees.  In our analysis, 

the shortening of the branch lengths resulted in overestimation of the rate at each site, which 

caused underestimation of distances by iterative rates and iterative posterior.  Nevertheless, 

the novel methods we present here produce high accuracy in all evolutionary scenarios except 

for the very extreme end of the rate variability in biological protein sequences. 

3.4 Modularity of the hybrid approach – application to bacterial phylogeny 

This section is a collaboration that was presented as a contributed talk in: 

Privman, E., Dutheil, J., Ninio, M., Friedman, N., Galtier, N., and Pupko, T. The Annual Meeting 

of the Society for Molecular Biology and Evolution (SMBE) 2007. Halifax, Canada. 

A valuable property of the hybrid ML-NJ is modularity.  Two modules in the algorithm can be 

freely substituted with other counterparts:  Here, standard NJ is used as the distance-based 

tree reconstruction module, but it can be replaced by any of the other NJ variants and other 

algorithms that build a tree based on a distance matrix (see Section ‎1.3).  The second 

interchangeable part is the evolutionary model that is used in ML estimation of distances.  The 

above results show that the ASRV model improves distance estimation accuracy.  Similarly, 

other enhancements of the model realism may be integrated into the ML-NJ hybrid.  Any 
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model parameters may be estimated in the ML stage of the iteration, where the rate 

parameters are estimated, and then subsequently used in the distance estimation stage (Figure 

‎3.1b above).  To demonstrate this potential of the hybrid scheme, this section describes the 

reconstruction of the bacterial phylogeny using a more advanced evolutionary model.  I will 

first present the phylogenetic question at hand and then describe how the ML-NJ hybrid can 

help to address it. 

3.4.1 Was the first living cell a thermophile? 

The origin of life and the last universal common ancestor (LUCA) are topics of debate that 

remain continuously active since the days of Charles Darwin.  It has been hypothesized that the 

first living cells developed in high temperature settings, near volcanic activity.  These niches 

harbor thermophilic species of bacteria and archaea.  This hypothesis requires that 

thermophilic species should be found at the root of the tree of life, as was the result of early 

reconstructions of the tree based on ribosomal RNA (rRNA) sequences (e.g., Woese 1987).  

However, more recent studies using a range of phylogenetic approaches, from supertree 

methods to estimation of the GC content of ancestral sequences (Galtier, Tourasse, and Gouy 

1999; Daubin, Gouy, and Perriere 2001; Galtier 2001; Brochier and Philippe 2002; Daubin, 

Gouy, and Perriere 2002) found evidence that the LUCA was a mesophile, living in moderate 

temperatures.  Several of these authors (including Galtier, Daubin, and their colleagues) argue 

that their phylogenetic innovations overcome biases of less sophisticated methods, which 

erroneously place the thermophiles at the root of the tree.  This placing may be an artifact 
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resulting from the “long branch attraction” phenomena (Felsenstein 1978), which is expected 

for the highly diverged rRNA sequences (and the rest of the genome) of the thermophiles. 

Sophisticated, more realistic models of evolution were suggested for improved accuracy of the 

tree of life.  One such model enhancement allows the rate of a specific site to vary along the 

tree (in addition to allowing the rate to vary among sites).  These are known as covarion-like 

models or models of site-specific rate variation (SSRV).  SSRV models were suggested for the 

purposes of deep phylogeny reconstruction (Germot and Philippe 1999; Lopez, Forterre, and 

Philippe 1999; Philippe et al. 2000) because the dramatic changes in the rRNA sequences of 

mesophile vs. thermophile species appear to involve many shifts in the evolutionary rate of 

sequence sites. Although these models have been applied to ancient phylogenies (e.g. Galtier 

2001), they were used for estimating the GC content of LUCA and not for phylogeny 

reconstruction.  The SSRV model was considered computationally complex, and Galtier (2001) 

limited himself to less than 40 rRNA sequences.  Therefore the model was not used for an ML 

tree search that requires evaluations of many topologies.  The challenge is then to utilize the 

SSRV model for efficient search for the ML tree of life, and to include as many sequences as 

possible in order to maximize the evolutionary information available. 

3.4.2 Reconstruction of the bacterial phylogeny from rRNA sequences 

We integrated the SSRV model into the hybrid ML-NJ method.  The efficiency of the distance-

based approach allows the analysis of a large sequence dataset with the SSRV model.  A dataset 

of 861 bacterial sequences of the small subunit (SSU) rRNA was retrieved from the European 
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Ribosomal RNA Database (Wuyts, Perriere, and Van De Peer 2004).  We included one 

representative from each bacterial genus that was sequenced to date.  A high-quality structure-

based alignment of these sequences was downloaded from the above database.  Two archaeal 

sequences were included as an outgroup – Aphrodite sulfophila and Acidolobus aceticus. 

The SSRV model with four discrete rate categories was used in combination with the Tamura 

(1992) substitution model.  Each iteration of the ML-NJ hybrid (Figure ‎3.1b) took approximately 

9 days on a 2.4GHz, 64bit Opteron processor, for the 861 rRNA sequences.  The likelihood score 

converged quickly after two such iterations and the resulting phylogeny is presented in Figure 

‎3.6.  To produce bootstrap confidence scores (Section ‎1.4) bootstrap trees were reconstructed 

using a single iteration given the “global information” from the second iteration of the iterative 

run.  Bootstrap runs were parallelized on a Linux cluster, but due to computational resource 

limitations only 31 bootstrap repeats were run. 
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Figure ‎3.6:  Phylogeny based on bacterial rRNA sequences, reconstructed using the SSRV 

model.  Phyla are collapsed and shown as triangles.  Thermophiles are colored in red.  

Clostridia are marked in red stripes because only some the genera are thermophilic.  An 

outgroup of two archaeal sequences was used (colored in green).  The Firmicutes phylum is not 

a monophyletic group in this tree and therefore its classes are shown separately.  Bootstrap 

scores presented are based on 31 bootstrap replicates.  
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The resulting tree is similar to a standard NJ tree (not shown) with respect to the positioning of 

the thermophiles at the root.  Thus, the analysis using an SSRV model supports the hypothesis 

that the ancestor of the bacteria was a thermophile.  The comparison between the NJ and 

SSRV-NJ trees reveals some differences in the positioning of other phyla, however, these 

branches have a low bootstrap support. 

3.5 Summary 

Current state-of-the-art distance-based phylogeny reconstruction methods neglect to take 

ASRV into consideration.  Thus, such methods suffer from high errors and bias, as we show in 

our simulation studies.  Our results also demonstrate that an attempt to estimate ASRV 

parameters for each pair of sequences independently will inevitably suffer from large errors.  

Therefore, we propose an iterative ML-NJ hybrid algorithm to extract more refined “global” 

ASRV information from the entire dataset, using the tree that was estimated in the previous 

iteration.  While all previously suggested distance-based methods consider each pair of 

sequences separately, the iterative method makes use of all available sequences, allowing 

more accurate parameter estimation for the gamma-ASRV model.  We use the “global 

information” for a novel Bayesian distance estimation method that integrates the posterior 

distribution of the rate at each site into the estimation of the distance. 

We demonstrate the improved accuracy of the hybrid method through a comparative study of 

distance estimation methods and their use in NJ.  The iterative posterior method produces 

trees of significantly improved likelihood for both real and simulated protein MSAs.  The 
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simulations also show that this novel method correctly reconstructs a larger percentage of the 

branches of the true tree.  Using simulations of sequence pairs we show that the “global 

information” that is available to the iterative method reduces errors and bias in distance 

estimation.  Our simulations demonstrate that these advantages are considerable in almost all 

scenarios, and are increasingly significant for large evolutionary distances and for proteins of 

high rate variability. 

Finally, the integration of the SSRV model demonstrates the modularity of the hybrid ML-NJ 

algorithm and its potential for reconstructing large phylogenies using realistic evolutionary 

models.  The analysis of the 861 bacterial genera is the first application of the SSRV model for 

tree reconstruction based on a large bacterial dataset. 
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4 Iterative use of improved phylogeny reduces alignment errors 

4.1 Introduction 

The improved accuracy of tree reconstruction (Chapter ‎3 above) led me to investigate 

alignment accuracy.  An accurate multiple sequence alignment (MSA) typically relies on a 

phylogenetic guide tree in the process of “progressive sequence alignment” (see Section ‎1.5 

above). Accurate reconstruction of phylogenies, in turn, requires an MSA. This circular 

dependence is usually solved by iterative, alternating phylogeny reconstruction and sequence 

alignment.  Most algorithms use a distance-based method to reconstruct an initial tree based 

on pairwise sequence alignments.  The tree is used as a guide tree for progressive sequences 

alignment, producing the first MSA.  The process is then repeated - the MSA is used to 

reconstruct the tree, and a second MSA is produced.  Most implementations do only two such 

iterations (Section 1.5.  E.g. Thompson, Higgins, and Gibson 1994; Notredame, Higgins, and 

Heringa 2000; Edgar 2004; Katoh et al. 2005). 

The first tree is based on pairwise distances derived from pairwise alignments.  The second tree 

is based on pairwise distances derived from the entire MSA, and is hence expected to be more 

accurate.  Similarly, the first MSA may also suffer from errors introduced during the progressive 

alignment, because the erroneous tree is used to determine the order of addition of sequences 

to the MSA.  Generally, the second tree is more accurate because it is based on a more 

accurate MSA, and the second MSA is more accurate because it is based on a more accurate 

guide tree.  The accuracy may be further improved in subsequent iterations. 
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It can be expected that errors in the guide tree lead to errors in the MSA.  However, previous 

investigations concluded that alignment accuracy is rather robust to errors in the tree (e.g., 

Nelesen et al. 2008).  In agreement with that view, progressive alignment programs use the 

simplest and fastest available tree reconstruction methods, such as NJ or UPGMA, rather than 

more accurate and elaborate methods (see Section ‎1.3). 

However, here we investigate the hypothesis that as the number of sequences increases, so 

does the impact of errors in phylogeny on the accuracy of the final MSA.  The rationale behind 

this hypothesis is that larger trees inevitably harbor more errors, which may cause alignment 

errors and lead to cascading failures during the longer process progressive alignment of many 

sequences.  This issue has never been tested when hundreds or thousands of sequences are 

analyzed.  In smaller datasets (e.g., Nelesen et al. (2008) analyzed 25 to 100 sequences) the 

standard guide tree may be accurate enough, and any errors that may be introduced during the 

progressive alignment do not propagate as much as in larger datasets. 

To test our hypothesis we analyzed alignment accuracy using either a simple NJ guide tree or a 

tree reconstructed by the hybrid distance-likelihood method described in Chapter ‎3, which 

significantly increases the guide tree accuracy.  We used an iterative scheme of alternating 

phylogeny reconstruction and sequence alignment.  We included the popular alignment 

algorithm CLUSTALW, as well as PRANK – a recent “phylogeny-aware” improvement of the 

classical progressive alignment algorithm, which makes better use of the guide tree in the 

inference of insertions and deletions.  We used simulation studies to evaluate these methods. 
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Our results demonstrate that for datasets of hundreds of sequences or more, the use of more 

accurate phylogeny significantly improves alignment accuracy.  This conclusion holds both for 

the conventional CLUSTALW and for the “phylogeny-aware” PRANK. 

4.2 Methods 

We chose relatively accurate alignment and phylogeny reconstruction methods that are still 

capable of analyzing large datasets efficiently (in this study, up to 1,000 sequences), which we 

integrated into an iterative scheme.   

The phylogeny reconstruction method described in Chapter ‎3 above achieves high accuracy 

while retaining the ability to process thousands of sequences by combining the benefits of 

distance-based and probabilistic methods.  In the present work we compare this hybrid ML-NJ 

method to simple NJ with respect to the accuracy of the resulting MSA.  We integrated the 

hybrid method with progressive sequence alignment algorithms to test whether the improved 

guide trees results in improved alignment accuracy. 

We chose two MSA algorithms:  CLUSTALW (Thompson, Higgins, and Gibson 1994) and PRANK 

(Loytynoja and Goldman 2005).  See Section ‎1.5 above for a description of these algorithms.  

Both implementations provide the option of an input guide tree, which is necessary for our 

iterative scheme.  CLUSTALW was included because it is a well-established, widely-used 

program.  PRANK, the “phylogeny-aware” alignment algorithm, was included because we 
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hypothesized that improved guide trees can be of greater assistance for an algorithm that 

makes more advanced use of the tree compared to previous progressive alignment methods. 

4.2.1 Iterative alignment and phylogeny 

Our iterative algorithm is based on the standard scheme illustrated in Figure ‎1.5, except that 

we use the ML-NJ hybrid tree reconstruction method instead of simple NJ.  It comprises of two 

modular building blocks: one of the two alignment algorithms and the hybrid phylogeny 

algorithm.  Since the tree reconstruction module can only work on an MSA, the first iteration 

uses a standard NJ, which is based on pairwise alignments, to build the first MSA.  Therefore, 

the beginning of the iterative flow is equivalent to a standard run of the MSA program. 

Following this, each iteration begins with tree reconstruction using the hybrid method, which is 

then used as the guide tree for the sequence alignment stage.  The process can be run for a 

pre-determined number of iterations, or for as long as the alignment score improves (as is 

given by CLUSTALW).  For our simulation benchmarks we ran four iterations, producing four 

MSAs in addition to the initial MSA that is based on the simple NJ guide tree. 

4.2.2 Alignment benchmark data 

All phylogeny and alignment methods were tested on a benchmark of simulated MSAs.  We 

used SIMPROT (Pang et al. 2005) which simulates the evolution of protein sequences along a 

given phylogenetic tree, including amino-acid substitution events, insertions and deletions, 
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according to empirically determined statistical distributions.  Simulations started with a 

sequence length of 300 amino acids. 

In order to achieve the most realistic simulated data possible we used a tree that was 

reconstructed by PHYML (Guindon and Gascuel 2003) from a large alignment of 400 

thymidylate synthase sequences.  We trimmed this tree to produce datasets of variable sizes by 

randomly removing leaves to generate different size categories:  100, 200, 300, or 400 

sequences.  To produce even larger datasets, we duplicated the tree in three copies, connected 

them to a new root with a branch length of 0.1. We then repeated the random trimming 

process to produce datasets of 500, 600, 700, 800, 900, and 1,000 sequences.  The random 

process of tree-trimming and SIMPROT sequence simulations was repeated 40 times for each 

size category (100 – 1000) to generate 40 independent datasets. 

We measured the alignment accuracy for each MSA compared to the reference “true” MSA.  

We used the sum-of-pairs (SP) score that measures the percentage of pairs of aligned residues 

in the reconstructed MSA that agree with the reference MSA (see Section ‎1.6) as implemented 

in the bali_score program (http://bips.u-strasbg.fr/fr/Products/Databases/BAliBASE2/). 

4.3 Results 

4.3.1 CLUSTALW 

We ran four iterations of the algorithm on simulated datasets ranging from 100 sequences to 

1,000.  Figure ‎4.1a plots the alignment accuracy of the MSA produced in each iteration for five 

http://bips.u-strasbg.fr/fr/Products/Databases/BAliBASE2/
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individual datasets of 400 sequences.  Although some cases show reduced errors and some 

elevated errors, the general trend is improved accuracy.  In Figure ‎4.1b we plot as a function of 

the number of sequences the average improvement of the SP score of the last MSA from the 

fourth iteration compared to the initial MSA (which is equivalent to a standard run of 

CLUSTALW).  A significant improvement was achieved for all dataset sizes.  Interestingly, these 

results do not show a positive correlation between the number of sequences and the accuracy 

improvement. 
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Figure ‎4.1:  Reduced alignment errors following iterations with CLUSTALW.  (a) 

Alignment error rates measured by the SP score of the MSA produced at the end of each 

iteration, for 10 independent datasets of 400 sequences.  (b) The average improvement 

in SP score of the last MSA relative to the first one, as a function of the number of 

sequences.  Each data point represents 40 independent datasets.  The standard deviation 

is indicated by vertical bars. 
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4.3.2 PRANK 

Next, we turned to test our iterative scheme with PRANK as the MSA algorithm.  With the 

abovementioned datasets, no statistically significant improvement was achieved by the 

iterative algorithm compared to a standard PRANK run (data not shown).  A possible reason for 

this failure is the fundamental difference in the “phylogeny aware gap placement” 

methodology of PRANK compared to classical implementations of progressive alignment, such 

as CLASTALW.  The PRANK algorithm is aimed at aligning sequence positions that are genuinely 

homologous, i.e. a residue that existed in the common ancestor was propagated to present 

sequences via substitution mutations alone (Ari Loytynoja, personal communication).  For 

example, two homologous sequences may contain an arginine in the same position, but these 

arginine residues were inserted in two independent events in the parallel lineages.  Such a pair 

is analogous rather than homologous, and should not be aligned in a PRANK alignment.  On the 

other hand, classical algorithms such as CLASTALW will tend to align such pairs. 

PRANK was originally designed for aligning genomic DNA sequences, which are not very 

diverged.  Conversely, distantly related protein sequences have undergone multiple 

consecutive insertion and deletion events and many pairs of similar amino-acid may have 

arisen through analogy, making the inference of true site-specific homology very difficult.  

Therefore Loytynoja himself argues that PRANK is not suitable for such datasets (personal 

communication and the PRANK website http://www.ebi.ac.uk/goldman-srv/prank/).   

http://www.ebi.ac.uk/goldman-srv/prank/
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For this reason we were concerned that our simulations produced too-diverged homologs, 

outside the range of operation of the “phylogeny-aware” methodology and we decided to test 

PRANK on simulations of smaller evolutionary distances.  We simulated datasets based on the 

same trees after multiplying all branch lengths by a scale factor of 0.1, 0.2, or 0.4, and ran our 

iterative algorithm as described above.  For datasets of less than 400 sequences, there was no 

significant improvement compared to a standard PRANK run.  However, on larger datasets we 

achieved significantly improved alignment accuracy.  

Figure ‎4.2a plots the alignment accuracy of the MSA produced in each iteration for five 

individual datasets of 1,000 sequences that were produced after scaling the trees by 0.2.  Again 

the general trend is reduction of SP errors.  Figure ‎4.2b plots the average accuracy 

improvement as a function of dataset size, for each scaling factor.  Here we find a strong 

correlation between the number of sequences and the accuracy improvement with scale factor 

0.2 and 0.4 (Pearson correlation r = 0.946, p = 0.001, and r = 0.958, p = 0.010, respectively). 
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Figure ‎4.2:  Reduced alignment errors following iterations with PRANK.  (a) Alignment 

error rates measured by the SP score of the MSA produced at the end of each iteration, 

for five independent datasets of 1,000 sequences.  (b) The average improvement in the 

SP score of the last MSA relative to the first one, as a function of the number of 

sequences.  Each data point represents 10 independent datasets.  The standard deviation 

is indicated by vertical bars. 
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4.4 Summary 

This chapter presents an extension of the iterative phylogeny reconstruction scheme 

developed in Chapter ‎3.  The contribution of improved topological accuracy was investigated 

within the widely used iterative scheme of phylogeny and alignment.  All progressive alignment 

programs use a quick distance-based method to build their guide tree.  Starting from the 

second iteration, an MSA is available for more sophisticated phylogenetic methods.  The hybrid 

method described in Chapter ‎3 allows a more accurate yet efficient phylogeny reconstruction.   

Previous studies concluded that alignment accuracy is rather robust to errors in the guide tree 

for datasets of 25 to 100 protein sequences (Nelesen et al. 2008).  However, the simulation 

studies described here demonstrate that, for larger datasets, the improved phylogenetic 

accuracy leads to significant improvement in alignment accuracy.  For diverged protein 

sequences aligned with CLUSTALW this effect was significant for all dataset sizes tested from 

100 to 1,000 sequences.  For less diverged sequences aligned with PRANK this effect was 

significant for 400 sequences or more.  The magnitude of this effect in PRANK was correlated 

with both sequence number and degree of divergence (scaling of the tree). 

Initially, we ran our iterative algorithm on real protein sequences from the widely-used 

BAliBASE benchmark (Thompson et al. 2005), which is based on structural alignments of real 

proteins (Section ‎1.6).  However, such datasets usually consist of few sequences per MSA (no 

more than 25 sequences in the case of BAliBASE) and our hypothesis was that the effect of the 

tree is substantial only in large datasets of hundreds of sequences.  In agreement with this 
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hypothesis, there was no change in the alignment accuracy by our iterative algorithm 

compared to a standard CLUSTALW run (data not shown).  Since larger alignment benchmarks 

of real proteins are not available we turned to simulations of sequence evolution. 

In parallel with our investigation, Liu et al. (2009) published similar results for simulated DNA 

sequences aligned in an iterative scheme combining the alignment algorithms MAFFT and 

MUSCLE with tree building using RAxML.  See discussion in Section ‎7.1 regarding the 

comparison to RAxML.  The general trends in that analysis are similar to the ones described 

here.  They demonstrate significant improvement in alignment accuracy for datasets of 500 and 

1,000 sequences, but not for datasets of 100 sequences. 

To conclude, when approaching a challenge of comparative analysis of hundreds of sequences 

researchers will do better to invest effort in the application of more accurate phylogenetic 

methods than the simple distance-based methods commonly used for building guide trees.  

This conclusion complements the recent attention given to “phylogeny aware” progressive 

sequence alignment by Loytynoja and Goldman (2008). 
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5 An alignment confidence score capturing robustness to guide-tree 

uncertainty 

This chapter is based on a published manuscript: 

 Penn, O.* Privman, E.*, Landan, G., Graur, D., and Pupko, T.  Mol Biol Evol, in press. 
* Equal contribution 

5.1 Introduction 

The investigation into the effect of the guide tree on progressive alignment led to an 

interesting observation.  Even when the accuracy score of the alignment was not significantly 

affected by the accuracy of the guide tree (in small datasets) we observed that changes in the 

guide tree gave rise to dramatic changes in the MSA, which were not reflected in significant 

changes in the accuracy score.  We hypothesized that these changes reflect uncertainty in the 

alignment rather than accuracy improvement.  In this chapter I describe the investigation that 

followed, of the effect of guide tree uncertainty on alignment uncertainty. 

As described in Section ‎1.1 above, an MSA is a prerequisite for virtually all comparative 

sequence analyses.  All such analyses take the MSA input for granted, regardless of 

uncertainties in the alignment.  Since errors in upstream methodologies tend to cascade 

downstream, alignment errors are an important concern in molecular data analysis.  In the last 

decade, considerable efforts have been made to improve alignment accuracy (see Section ‎1.5).  

Nevertheless, studies based on structural-alignment benchmarks (described in Section ‎1.6 

above) such as BAliBASE (Thompson et al. 2005) show that obtaining accurate alignments 

remain a challenging task.  A recent evaluation of SP scores across the BAliBASE benchmark 
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concluded that the best alignment programs to date achieve only 76% average accuracy, i.e., a 

quarter of all residue pairs are incorrectly aligned (Nuin, Wang, and Tillier 2006).  Therefore, 

distinguishing between accurate and noisy alignment regions is critical for MSA-dependent 

analyses, which should try to avoid alignment regions of low quality.   

There are several possible sources for errors in sequence alignment.  To begin with, all MSA 

programs use heuristic methods.  In contrast to pairwise sequence alignment that can be 

optimally solved under a given scoring scheme, finding the optimal MSA is computationally 

prohibitive.  Thus, MSA programs usually produce a sub-optimal alignment.  Furthermore, even 

with optimal algorithms for pairwise sequence alignment there are often several co-optimal 

solutions, i.e., different alignments with the same maximal score.  This issue affects all state-of-

the-art MSA algorithms that are based on the “progressive alignment approach” (Feng and 

Doolittle 1987), because they use an optimal pairwise alignment algorithm for iteratively 

adding sequences to the MSA.  Notably, while progressive alignment approaches differ in the 

manner according to which post-alignment corrections and refinements are made, the 

progressive alignment step is a critical component in all of them.  Landan and Graur (2007; 

2008) investigated this source of error and concluded that 80-90% of the columns and 40-50% 

of aligned residue pairs in a typical MSA are affected by uncertainty due to co-optimal 

solutions. 

An additional point of concern is that the objective functions, which alignment algorithms 

attempt to maximize, are based on simplified models of the process of molecular sequence 
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evolution.  Such approximations may yield high scores for unrealistic alignments.  Therefore, 

even if we had unlimited computational power to find the set of MSAs with the optimal score, 

we cannot be confident that it includes the true alignment, since the true alignment may 

actually be sub-optimal.  Additionally, the stochastic nature of sequence evolution introduces 

noise on top of the signal, and thus the true evolutionary history will often score less than the 

highest scoring alignment even if a perfect scoring function were available. 

Finally, the alignment may be sensitive to errors in the guide tree, which is used for choosing 

the order in which the sequences are added to the growing MSA in the progressive alignment 

approach.  As described in Section ‎1.5 above, the greedy nature of the progressive heuristic 

entails that early mistakes in pairwise alignments cannot be rectified with the addition of 

information from other sequences in latter stages.  This problem may be aggravated when the 

topology of the guide tree is incorrect, leading to incorrect order of addition of sequences.  

Indeed, estimates of guide tree accuracy show that, on average, more than 10% of tree 

branches are topologically incorrect for datasets of 25 taxa, and this proportion increases with 

the number of taxa (Nelesen et al. 2008).  Several studies measured alignment accuracy in 

terms of the percent of correctly aligned residues, by comparing a reconstructed MSA to a 

reference “true” benchmark MSA (e.g., Nelesen et al. 2008; Landan and Graur 2009).  These 

studies concluded that the accuracy of the guide tree has a negligible effect on the accuracy 

score of the alignment.  However, as we will show here, perturbations in the tree affect 

significant portions of the alignment, shifting residues one way or the other, even though the 
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overall accuracy score does not change significantly.  Therefore, we argue that guide tree 

uncertainty is an important source of alignment uncertainty. 

All the above factors contribute to substantial errors in alignments produced by state-of-the-art 

MSA algorithms.  Equally troubling is the fact that, with the notable exception of TCOFFEE 

(Notredame, Higgins, and Heringa 2000), most of the widely-used MSA programs do not 

provide information regarding the reliability of different regions in the alignment, e.g., 

CLUSTALW (Thompson, Higgins, and Gibson 1994), MUSCLE (Edgar 2004), MAFFT (Katoh et al. 

2005), and PRANK (Loytynoja and Goldman 2005).   

Only a few confidence measures for alignments have been published.  In phylogeny 

reconstruction it is common practice to remove alignment blocks suspect of low quality using 

the Gblocks program, which defines various cutoffs on the number of gapped sequences in an 

alignment column (Castresana 2000; Talavera and Castresana 2007).  However, these criteria 

may excessively filter out regions with insertion/deletion events that can be aligned reliably.  A 

few alignment algorithms output site-specific scores that allow the selection of high-confidence 

regions.  Such a service was first offered by the SOAP program (Loytynoja and Milinkovitch 

2001), which tests the robustness of each column to perturbation in the parameters of the 

popular alignment program CLUSTALW.  The TCOFFEE web server (Poirot, O’Toole, and 

Notredame 2003) uses a library of alignments in the construction of the final MSA, and its 

output MSA is colored according to confidence scores that reflect the agreement between 

different alignments in the library regarding each aligned residue.  Another alignment program 
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that can output an MSA with confidence scores is FSA (Bradley et al. 2009), which uses a 

statistical model that allows calculation of the uncertainty in the alignment.  Similarly, the HoT 

(Heads-Or-Tails) score can be used as a measure of site-specific alignment uncertainty due to 

the co-optimal solutions problem mentioned above (Landan and Graur 2007; Landan and Graur 

2008).  However, none of these confidence measures account for uncertainties in the guide 

tree. 

An alternative, more statistically justified approach to assess alignment uncertainty is the use 

of probabilistic evolutionary models for joint estimation of phylogeny and alignment (described 

in Section ‎1.7 above).  The Bayesian approach allows calculation of posterior probabilities of 

estimated phylogeny and alignment, which is a measure of the confidence in these estimates 

across the whole solution space.  In comparison, in the approach presented here and the 

previously published HoT score, perturbations are made to the input of greedy algorithms such 

as CLUSTALW, which were not designed to consider sub-optimal solutions.  Therefore, in 

principle, we should prefer the Bayesian approach.  However, in practice, the Bayesian 

approach is infeasible for all but the smallest datasets (Section ‎1.7). 

Here we will show that uncertainties in the guide tree have a considerable effect on the 

robustness of the MSA.  Subsequently, we develop a measure quantifying this effect as a 

confidence score for each column and for each residue in the alignment, based on the 

robustness of their alignment with respect to perturbations in the guide tree.  Our measure is 

based on the bootstrap method, which is widely used for assigning confidence scores to 



72 

 

branches in reconstructed phylogenetic trees.  Benchmark studies using BAliBASE as well as 

simulated sequences show that our alignment confidence scores are a good predictor of 

alignment accuracy, significantly improving on the HoT scores.  Therefore, we conclude that 

guide tree uncertainty is an important source of error in sequence alignment, and that MSA-

based analyses should take into account site-specific confidence scores, in order to avoid 

artifacts. 

5.2 Methods 

5.2.1 Construction of perturbed multiple sequence alignments 

We begin with a standard MSA generated by any progressive alignment program, hereby 

termed “base MSA.” Similar to the common practice in phylogeny reconstruction, we use the 

bootstrap (BP) approach (Felsenstein 1985) to obtain a set of trees that can be used as a proxy 

to a confidence interval around the inferred tree.  These trees are obtained using the neighbor 

joining (NJ) algorithm (Saitou and Nei 1987).  The pairwise distances used as input to the NJ 

algorithm are maximum likelihood estimates computed using the JTT amino acid replacement 

matrix (Jones, Taylor, and Thornton 1992).  Next, each bootstrap tree is given as an input guide 

tree to the alignment program.  The resulting set of perturbed MSAs is used for estimating the 

confidence level of the base MSA.  As in the BP test for tree branches, the larger the number of 

perturbed guide trees, the more accurate is the estimated confidence score.  In all of our 

analyses we used 100 BP replicates.  The flow of the algorithm is shown in Figure ‎5.1. 
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Figure ‎5.1:  The "GUIDe tree based AligNment ConfidencE" (GUIDANCE) measure. A 

base MSA is produced by any progressive alignment method. Bootstrap neighbor joining 

(NJ) trees are reconstructed and given as guide trees to the progressive alignment 

program, producing a set of perturbed MSAs. Sum-of-pairs scores are then calculated by 

comparing each perturbed MSA to the base MSA, and are color coded on each residue in 

the alignment. 

5.2.2 GUIDANCE confidence score calculation 

The main goal of our method is to assign a confidence score for each column of the base MSA, 

which we name “GUIDe tree based AligNment ConfidencE” (GUIDANCE) scores.  To this end, we 
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define a set of distances that measure the dissimilarity between a specific perturbed MSA and 

the base MSA.  Specifically, three widely used distances are computed:   

 Column score (CS):  Each column of the base MSA that is identically aligned in the 

perturbed MSA is given a score of 1; all other columns are given the score 0.   

 Sum-of-pairs score (SP):  Each pair of residues in the base MSA that is identically aligned 

in the perturbed MSA is given a score of 1; all other residue pairs are given the score 0.   

 Sum-of-pairs column score (SPC):  The score of each column is simply the average of the 

SP scores over all pairs in it.   

The CS score cannot distinguish between a column with one error and a column with many 

errors.  In contrast, the SPC score can better quantify the difference between a column in the 

base MSA and a column in the perturbed MSA.  Subsequently, unless stated otherwise, we only 

use SP and SPC.   

Each residue pair in the base MSA can have a score of 1 or 0 in each of the perturbed MSAs.  

The average score over all perturbed MSAs is a measure of the confidence in aligning these two 

residues, and is termed here the GUIDANCE residue-pair score.  The average SPC score over all 

perturbed MSAs is termed here the GUIDANCE column score. 

 Furthermore, we define a confidence score for a specific residue in a specific alignment 

column, the GUIDANCE residue score.  This score is calculated by averaging the GUIDANCE 
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residue-pair scores over all pairs that include the residue in question.  This score reflects the 

confidence of aligning this specific residue in this column. 

5.2.3 Benchmark data 

The BAliBASE benchmark database (Thompson et al. 2005) consists of MSAs that are based on 

structural alignments and are specifically designed for the evaluation and comparison of MSA 

programs.  The database is categorized into several reference sets, according to types of 

alignment problems.  Here we use BAliBASE reference sets 1-5, which include 218 datasets.   

We applied the GUIDANCE method to each dataset, using the MAFFT alignment program 

(version 6.711), generating GUIDANCE residue-pair scores for each pair of aligned residues in 

the base MSA.  We then used the BAliBASE reference alignments in order to assess the 

predictive power of the GUIDANCE score to identify alignment errors.  Each aligned residue pair 

in the MAFFT base MSA was classified as correct/incorrect by comparing it to the reference 

MSA.  A receiver operating characteristic (ROC) analysis (Green and Swets 1966; Fawcett 2006) 

was conducted using the R package ROCR (Sing et al. 2005), to evaluate the specificity and 

sensitivity of the GUIDANCE confidence measure.  The performance of the GUIDANCE predictor 

was measured by the area under the ROC curve (AUC).  The BAliBASE reference provides 

annotations of alignment regions for which the alignment is verified by superposition of protein 

structures, named core blocks.  Therefore, we limited all the BAliBASE analyses to columns 

belonging to these core blocks only. 
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5.2.4 Simulations 

The advantage of simulation is that the evolutionary history of insertion and deletion events is 

absolutely known.  We used the ROSE program (Stoye, Evers, and Meyer 1998) to simulate 

protein alignments based on BAliBASE datasets.  Each dataset of genuine protein sequences 

was used to reconstruct a phylogenetic tree using NJ.  Site-specific evolutionary rates were 

estimated using the Bayesian method implemented in rate4site (Mayrose et al. 2004, 

http://www.tau.ac.il/~itaymay/cp/rate4site.html).  We fed the tree and the rates as input to 

ROSE, thereby producing a simulated dataset for each of the original BAliBASE datasets, 

mimicking the biological characteristics of these proteins.  These simulated datasets were used 

to conduct the ROC analysis as described above, except that here all columns in the reference 

alignment were used.   

To supplement these simulations in an independent approach that is not based on the 

BAliBASE data, we also used the INDELible program (Fletcher and Yang 2009) to simulate 100 

protein datasets of 50 sequences, using a root sequence length of 300, random trees, a power-

law model of indel distribution with indelrate=0.1, gamma-distributed among site rate variation 

(alpha=1), and the LG replacement matrix. 

5.2.5 Comparison to the Heads-or-Tails confidence measure 

We compared the performance of the GUIDANCE measure to the HoT score, as described in 

Landan and Graur (2008), using the same MAFFT version (6.711).  ROC analysis was performed 

as described above. 
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5.3 Results 

5.3.1 Most alignment columns are sensitive to guide tree uncertainty 

We applied the GUIDANCE method, using both MAFFT (Katoh et al. 2005) and CLUSTALW 

(Thompson, Higgins, and Gibson 1994), to an exemplary protein dataset consisting of 130 

homologous chemoreceptors from Drosophila melanogaster (Robertson, Warr, and Carlson 

2003).  The purpose of this analysis was to study the effect of the guide tree on the resulting 

MSA, for a typical alignment problem.  Figure ‎5.2 shows the level of agreement between the 

perturbed MSAs, generated by the GUIDANCE method, and the base MSA, generated by either 

CLUSTALW or MAFFT, using either column scores (CS) or sum-of-pairs scores (SP).  For 

CLUSTALW, the CS scores vary between 0.029 and 0.11, with a median of 0.053 (Figure ‎5.2a).  

That is, in a typical perturbed MSA less than 6% of the columns are identically aligned as in the 

base MSA.  For MAFFT alignments, the median is 11%.  Taken together, these results suggest 

that alignment columns are highly sensitive to uncertainties in the guide tree.  We next tested 

the sensitivity of aligned residue pairs, in terms of the average SP score of each perturbed MSA 

(Figure ‎5.2b).  For CLUSTALW, the SP scores vary between 0.28 and 0.36, with a median of 0.31.  

For MAFFT, the SP scores vary between 0.31 and 0.43, with a median of 0.38.  These results 

imply that in any perturbed MSA less than 50% of residue pairs are aligned as in the base MSA. 
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Figure ‎5.2:  Agreement between MSAs built based on perturbed bootstrap trees and 

the base MSA for MAFFT and CLUSTALW alignments of D. melanogaster chemoreceptor 

sequences. Box plots summarize medians, quartiles, and range of column scores (a) and 

sum-of-pairs scores (b).  

5.3.2 GUIDANCE measure can identify alignment errors 

Since uncertainty in the guide tree results in alignment uncertainty (as shown above), we 

hypothesized that alignment errors can be detected by searching for those alignment regions 

that are sensitive to guide tree perturbations.  To this end, we used a continuous range of 

cutoffs for the GUIDANCE scores.  The cutoff was used as a classification criterion to separate 

columns or residue pairs into reliable and unreliable.  In order to test how well this 

classification correctly detects actual alignment errors, the columns and residue pairs of the 

inferred alignment should be compared to a known “true” one.  Such comparison will reveal 

the proportions of true positive (correctly aligned residues that are marked as reliable by the 
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GUIDANCE classifier) and false positive (erroneously aligned residues that are marked as 

reliable by the GUIDANCE classifier) predictions.  Since, in most cases, the “true” alignment is 

unknown, two approaches were used here to test the performance of the GUIDANCE classifier:  

(i) comparison against a reference benchmark of curated MSAs, and (ii) simulation studies.  In 

addition, we compare the performance of the GUIDANCE classifier to the previously published 

HoT score, which was shown to be a highly accurate predictor of alignment errors (Landan and 

Graur 2008).   

BAliBASE benchmark:  We applied the GUIDANCE measure, using the MAFFT alignment 

algorithm, to the BAliBASE benchmark (see Section ‎5.2.3).  Figure ‎5.3a presents a ROC analysis 

of GUIDANCE scores and HoT scores for residue pairs, as classifiers of alignment errors relative 

to the BAliBASE reference.  Both methods accurately identified alignment errors, with an 

advantage to GUIDANCE over HoT, giving AUC values of 94.0% and 89.7%, respectively. 
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Figure ‎5.3: Accuracy of GUIDANCE scores in identifying alignment errors.  ROC curves for 

HoT scores (red) and GUIDANCE scores (blue) of aligned residue pairs as predictors for 

alignment errors in:  (a) the BAliBASE benchmark;  (b) the simulations benchmark. 

Simulations benchmark:  Simulation studies provide further support for the higher accuracy of 

GUIDANCE scores compared to HoT (Figure ‎5.3b).  As opposed to real protein benchmarks, in 

which one can never be absolutely sure of the true alignment, the exact locations of gaps are 

known with certainty in alignments of sequences generated by simulation.  However, one has 

to make sure that the simulation settings reflect as much as possible true evolutionary 

dynamics.  To this end, our simulations were based on the BAliBASE reference MSAs.  That is, 

we simulated a reference alignment based on the phylogenetic tree and site-specific 

evolutionary rates inferred for each of the 218 datasets in BAliBASE, in order to replicate the 
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natural evolutionary dynamics of protein families.  The GUIDANCE classifier accurately 

identified alignment errors with an AUC of 96.5%, improving on the 92.8% of the HoT classifier.  

An example demonstrating the difference between GUIDANCE and HoT is given in Figure ‎5.4, 

which plots the distribution of GUIDANCE and HoT column scores, compared to the actual 

alignment accuracy in the first 260 columns of a typical alignment of 11 simulated sequences.  

Both GUIDANCE and HoT scores correlate with the actual alignment errors, giving Pearson 

correlation coefficients of 0.81 and 0.50, respectively. 

 

Figure ‎5.4:  An example from the simulations benchmark.  Distribution of GUIDANCE 

column scores (blue) compared to Heads-or-Tails (HoT) scores (red) and the actual 

alignment accuracy (green) in the first 260 columns of a typical simulated alignment. 

Independent simulations of 100 datasets using the INDELilble program (Fletcher and Yang 

2009), which were not based on BAliBASE data, gave comparable results – an AUC of 90.1% for 
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GUIDANCE and 88.4% for HoT.  To summarize, the results obtained for the simulated data are 

in line with those obtained for the BAliBASE benchmark. 

A combined GUIDANCE-HoT score:  One would expect that GUIDANCE and HoT identify 

different types of alignment errors.  We thus tried to combine the two scores to produce an 

even more powerful predictor.  We investigated several approached in combining the two 

scores, including weighted average and a minimum function.  However, they all produced 

similar ROC performance as the GUIDANCE measure alone. 

Comparison to Gblocks:  The Gblocks program (Castresana 2000) is design to eliminate poorly 

aligned regions of the MSA, effectively giving a binary score for every column.  To compare the 

performance of Gblocks and our method, we run Gblocks on the simulation benchmark using 

two sets of parameters, "stringent" and "relaxed", as defined in Talavera et al.  (2007).  Figure 

‎5.5 presents the false-positive and the true-positive rates of Gblocks, together with a ROC 

analysis of GUIDANCE column scores.  The results show that for the same proportion of false-

positives, GUIDANCE provides more true-positives, for both the stringent and the relaxed 

conditions. 
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Figure ‎5.5:  Comparison to Gblocks. The false-positive and true-positive rates of Gblocks 

"stringent" (red) and "relaxed" (green) parameter sets in comparison to a ROC curve for 

GUIDANCE column scores (blue), for the simulations benchmark. 

Figure ‎5.6 summarizes the overlap between alignment errors that were detected by GUIDANCE 

and HoT scores as a Venn diagram.  The total of 1,914,804 incorrectly aligned residue pairs in 

the MAFFT reconstruction of the BAliBASE benchmark were classified as detected by either 

method if their confidence score was less than 1.  Almost 10% of the alignment errors were 

detected by GUIDANCE and not detected by HoT.  In contrast, less than 1% of alignment errors 

were detected by HoT alone.  Only 2.8% of alignment errors were not detected by either 

method. 
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Figure ‎5.6:  Venn diagram of alignment error detection by the GUIDANCE and Heads-or-

Tails (HoT) scores.  The total of 1,914,804 incorrectly aligned residue pairs in the 

BAliBASE benchmark were classified as detected by either method if their confidence 

score was less than 1.  GUIDANCE detected 96.4% of the errors while HoT detected 

87.3%.  The HoT-detected-errors are nearly a subset of the GUIDANCE-detected-errors. 

5.3.3 Visualization of alignment uncertainty 

To facilitate examination of a specific MSA of interest, we suggest a graphic visualization of 

alignment uncertainty by coloring the MSA according to the GUIDANCE scores.  As an example, 

Figure ‎5.7 shows a colored portion of the same MSA of chemoreceptors sequences that was 

used in Figure ‎5.2 above.  The GUIDANCE residue scores are color coded on the MSA.  This is a 

convenient way to inspect the implications of low-confidence regions for subsequent analysis.  
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Magenta colored residues can be considered reliable, while blue colored residues should be 

avoided.  In addition, a plot of the GUIDANCE column scores is presented.   

 

Figure ‎5.7:  Color-coded GUIDANCE scores for D. melanogaster chemoreceptor 

sequences.  A portion of the MSA is presented (columns 757-875 of 32 sequences). 

Confidently aligned residues are colored in shades of magenta and pink, while uncertain 

residues are colored in shades of blue.  GUIDANCE column scores are plotted below the 

alignment. 
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As expected, wide gap-less blocks such as the first from the left score close to 100% confidence.  

Note the alignment is confident even though the sequences are variable.  Downstream, the 

second and third blocks score significantly lower even though they similarly appear to be solid 

blocks.  Furthermore, the GUIDANCE residue scores discriminate between the majority of 

sequences in the third block that are reliably aligned and two sequences that stand out in 

unreliable blue.  Such a case of a divergent, badly-aligned sequence can be easily discovered 

using GUIDANCE. 

5.4 Summary 

The study reported here demonstrates that alignment reliability is dramatically affected by 

uncertainties in the guide tree.  Based on this observation, a new measure for alignment 

confidence was devised.  Bootstrap tree sampling, a proxy to a “confidence interval” around 

the guide tree, is used to perturb the progressive alignment and to quantify of the robustness 

of the alignment to such perturbations in the guide tree.  Thereby, a measure for guide-tree 

uncertainty is translated into a measure of alignment uncertainty.  This methodology produces 

the GUIDANCE confidence scores for each aligned residue, which can be summarized for each 

column or for each sequence in the MSA.  The GUIDANCE scores facilitate consideration of 

alignment reliability of every residue in any downstream MSA-based analysis. 

We evaluated the predictive power of GUIDANCE scores to identify alignment errors both for 

the BAliBASE benchmark of real protein alignments and for simulated alignments.  We also 

compared the new GUIDANCE measure to the previously published HoT score, which is a 
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measure of alignment unreliability due to the co-optimal solutions problem (Landan and Graur 

2007; Landan and Graur 2008).  Notably, the HoT score was previously shown to be highly 

successful in predicting residue pairs that are erroneously aligned, and in the present study we 

report an AUC of 89.7% for HoT scores applied to the BAliBASE benchmark.  The GUIDANCE 

scores make a substantial improvement on top of that, reaching an AUC value of 94.0%.  Simply 

put, if we pick a point along the ROC plot in Figure ‎5.3a, we could use GUIDANCE scores to 

identify 80% of the correctly aligned residues in an average MSA, while “suffering” from only a 

5% rate of false positives. 

Interestingly, an average or a minimum of the two scores does not improve the AUC any 

further.  This is surprising because one could expect some alignment columns that are 

uncertain in terms of co-optimal solutions, but not in terms of the robustness to the guide tree.  

If such columns existed in sufficient numbers then the combination of HoT and GUIDANCE 

measures should improve the prediction accuracy relative to the GUIDANCE measure alone.  

Since this is not the case, we conclude that most columns affected by the co-optimality issue 

are also affected by uncertainty in the guide tree.  This does appear to be the case since less 

than one percent of alignment errors were detected by the HoT score and not by the 

GUIDANCE score (Figure ‎5.6).  Clearly, while GUIDANCE focuses only on the effect of guide tree 

on alignment uncertainty, research on other sources of errors beside the guide tree can lead to 

better detection and quantification of alignment errors. 
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We conclude that the new alignment confidence measure is a highly accurate predictor for the 

correctness of specific MSA columns.  As such, it is valuable for any MSA-based analysis.  We 

encourage researchers to use the GUIDANCE confidence measure before any downstream 

analysis, rather than rely on alignments as unquestionable truths.  
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6 GUIDANCE:  a web server for assessing alignment confidence scores 

This chapter is based on a published manuscript: 

Penn, O.* Privman, E.*, Ashkenazy, H., Landan, G., Graur, D., and Pupko, T.  Nucleic Acid Res 

38:W23-W28.   
* Equal contribution 

As a follow-up to the previous chapter, the present chapter describes the GUIDANCE web 

server, an implementation of the GUIDANCE confidence measure providing the following 

services:  (i) producing MSAs accompanied with their site-specific confidence scores; (ii) 

graphically projecting these scores onto the MSA; and (iii) filtering and re-aligning low 

confidence regions.  The server points to columns and sequences that are unreliably aligned 

and enables their automatic removal from the MSA, in preparation for downstream analyses.  

The GUIDANCE server has a user-friendly interface, intuitive graphical results, and is freely 

available for use at http://guidance.tau.ac.il with no requirement of log-in.  Two algorithms for 

quantifying MSA uncertainties are implemented in the server.  The GUIDANCE score measures 

the robustness of the MSA to guide-tree uncertainty as described in Chapter ‎5‎5 above.  The 

Heads-or-Tails (HoT) score measures alignment uncertainty due to co-optimal solutions 

(Landan and Graur 2007; Landan and Graur 2008). 

Similar tools exist for assessing alignment confidence, such as T-COFFEE (Poirot, O’Toole, and 

Notredame 2003), SOAP(Loytynoja and Milinkovitch 2001), and MUMSA (Lassmann and 

Sonnhammer 2005b).  The advantages of the web server implemented here are:  (a) it is based 

on robust statistical measures of MSA reliability for quantifying two major sources of alignment 

http://guidance.tau.ac.il/
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uncertainty (co-optimal solutions and guide-tree uncertainty) that are not addressed by other 

tools; (b) it allows the user to fine-tune the degree to which unreliable MSA parts are removed; 

(c) it implements a range of MSA algorithms and evolutionary models (for codons, amino-acids 

and nucleotides); (d) it is straightforward and easy to use. 

6.1 Methods 

The minimal input requirement for running the server is a set of DNA, RNA or protein 

sequences in FASTA format.  The general flow of the program is as follows:  (i) a standard MSA 

is generated, hereby termed “base MSA,” by applying one of several progressive MSA 

algorithms; (ii) a set of perturbed MSAs is constructed according to the alignment confidence 

algorithm (HoT of GUIDANCE, see below); (iii) The set of MSAs is compared to the base MSA in 

order to estimate its confidence level.  This comparison results in confidence scores between 0-

1 for each residue, residue-pair, column, and sequence of the MSA, which are essentially 

different ways to average Sum-of-Pairs (SP) scores (Carrillo and Lipman 1988; Thompson, 

Plewniak, and Poch 1999); (iv) the confidence scores of all residues are projected onto the 

MSA, using a color-scale and the column scores are plotted below the alignment; (v) unreliable 

columns and sequences may be removed from the base MSA.  The server currently supports 

three progressive alignment algorithms:  CLUSTALW, MAFFT, and PRANK (Thompson, Higgins, 

and Gibson 1994; Katoh et al. 2005; Loytynoja and Goldman 2005). 

The above procedure differs between GUIDANCE and HoT in the way that the set of perturbed 

MSA is created.  GUIDANCE scores reflect the robustness of an alignment to guide tree 
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uncertainty.  The GUIDANCE method perturbs the guide tree used to build the MSA, using 

bootstrap sampling (described in detail in Chapter ‎5).  On the other hand, HoT scores reflect 

alignment uncertainty due to co-optimal solutions in the progressive alignment procedure.  

Here the set of perturbed MSAs is constructed by reversing the sequences at each of the 

pairwise alignment steps of the progressive alignment algorithm (Landan and Graur 2008). 

6.1.1 Adjustable parameters 

The server implements a few advanced options that are useful for fine-tuning the results.  For 

the GUIDANCE algorithm, the number of bootstrap repeats can be set by the user (the default 

value is set to 100).  The higher this number is, the more accurate the confidence score, but the 

running time increases linearly.  The cutoffs according to which columns and sequences are 

filtered out for subsequent analysis are also adjustable.  It is possible to change these cutoffs 

according to the proportion of columns\sequences that the user wishes to retain.  The order of 

the sequences in the output MSA may be set according to the input file, or according to the 

alignment algorithm result file. 

In addition, the server allows uploading a user MSA file instead of the sequences file.  In this 

case, the input MSA is used as the base MSA and the confidence scores are calculated in the 

same way as described above.  This option should be used with caution.  It is useful for 

analyzing an MSA of interest, for example, an MSA that was generated using a more accurate 

guide-tree than the standard neighbor joining tree.  However, it is important to remember that 

even when the base MSA is given as input, the alignment algorithm chosen is applied many 
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times in order to generate each of the perturbed MSAs.  Therefore, supplying an MSA created 

by one program and inferring its confidence using another program may result in false 

predictions. 

Advanced users can also alter the parameters passed on to the alignment program used.  For 

example, by default, the server runs PRANK with the “+F” flag, but the experienced user may 

wish to remove that option in some cases (see http://www.ebi.ac.uk/goldman-srv/prank/).  For 

MAFFT the user may enable the iterative refinement option and set the number of iterations in 

the MAXITERATE parameter.  Additionally, an option to choose between the iterative 

refinement strategies genafpair, localpair, and globalair is provided when running MAFFT.  See 

the MAFFT website for a description of these options and scenarios where their use is 

recommended (http://mafft.cbrc.jp/alignment/software/algorithms/algorithms.html). 

6.1.2 Output  

The main result of the GUIDANCE server is a graphical visualization of the confidence scores 

which consists of two parts (Figure 1a):  (i) Color-scaled projection of the confidence scores of 

each residue onto the base MSA; (ii) A plot of the column scores.  Text files are also produced 

containing the confidence scores for each column, residue, residue-pair, and sequence.  In 

addition, the following MSA files are provided:  (i) The base MSA; (ii) The MSA containing only 

reliable columns that passed a predefined threshold (this file may be used in downstream 

analyses such as phylogeny reconstruction); (iii) A sequence file of reliable sequences only 

(again for a predefined threshold).  It is recommended to rerun GUIDANCE on the filtered 

http://www.ebi.ac.uk/goldman-srv/prank/
http://mafft.cbrc.jp/alignment/software/algorithms/algorithms.html
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sequences as input, in order to re-align them without the disruptive effect of the badly aligned 

sequences (see example below).  This can be done simply by clicking on the button next to the 

output file link. 

6.2 Case study:  the HIV Vpu accessory protein 

We illustrate using GUIDANCE to identify unreliable alignment columns by analyzing an MSA of 

Vpu protein sequences from human and simian immunodeficiency viruses (HIV and SIV).  These 

viruses are known for their high rate of evolution, which is attributed to an arms race between 

the virus and the host immune system (Rambaut et al. 2004).  The Vpu protein has been 

recently shown to antagonize the host protein Tetherin, an innate immune factor, in order to 

promote viral release and replication (Neil, Zang, and Bieniasz 2008).  Therefore, it is a natural 

candidate for many evolutionary analyses that rely on an MSA.  Our purpose here was to 

demonstrate the use of GUIDANCE to evaluate reliability of the MSA, and the importance of 

this evaluation for the interpretation of downstream analyses. 

Vpu is an accessory viral protein present in HIV-1 and SIV infecting chimpanzees and other 

primate species, yet absent in HIV-2.  The protein contains ~80 amino-acids and has two known 

major functions, which are conducted by two distinct domains of the protein:  (i) promotion of 

CD4 degradation via the cytoplasmic domain; and (ii) enhancement of virion release from host 

cells via the transmembrane domain, which has shown to be related to antagonism of Tetherin 

(Neil, Zang, and Bieniasz 2008; Nomaguchi, Fujita, and Adachi 2008).   
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Figure ‎6.1:  An example of the GUIDANCE output. (a) Residue confidence scores are projected onto 

the MAFFT alignment of Vpu protein sequences from human and simian immunodeficiency viruses 

(HIV and SIV). Confidently aligned residues are colored in shades of magenta and pink, while 

uncertain residues are colored in shades of blue. Column scores are plotted below the alignment. (b) 

Dramatically improved alignment confidence after filtering low scoring sequences and re-running 

GUIDANCE. Note the color-coding next to the sequence names before and after re-alignment. 
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We ran GUIDANCE on a sample of Vpu protein sequences from the three main HIV-1 groups 

(M, N and O) and SIV sequences from chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and 

several Cercopithecus species, using MAFFT (Figure ‎6.1a).  The results clearly show that the 

alignment of the cytoplasmic domain of Vpu is not robust to perturbations in the guide tree.  

The same applies to some residues in the transmembrane and extracellular domains.  Looking 

at specific sequences, the SIV sequences from Cercopithecus and some of the sequences from 

P.  troglodytes are shown to be badly aligned with the rest of the sequence set.  By simply 

pressing a button, these sequences were filtered and GUIDANCE was rerun on the confidently 

aligned sequences only.  The results demonstrate a dramatic improvement in MSA confidence 

(Figure ‎6.1b).  The transmembrane domain and the 5' region of the cytoplasmic domain now 

receive almost perfect confidence scores.  Note that although a clade of sequences was 

excluded by the GUIDANCE filter and the alignment is now considerably more condense, the 

remaining sequences are still highly variable and several gapped regions have been retained.  

The removal of the unconfidently-aligned sequences is necessary to avoid artifacts that they 

would have otherwise caused in downstream analyses such as inference of positive selection 

(Wong, Suchard, and Huelsenbeck 2008; Schneider et al. 2009).   

Even after removing the low-scoring sequences, the alignment of the 3' region of the 

cytoplasmic domain is uncertain, thus, downstream analyses on these regions should be 

interpreted with caution.  When appropriate, one may use the filtered MSA, provided by 

GUIDANCE, which contains only the reliable columns (e.g., for inference of positive selection).  
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This example demonstrates the importance of using GUIDANCE for removing badly aligned 

sequences that may disrupt the MSA and for noting which columns are suspect of alignment 

errors, which might affect downstream analysis. 

6.2.1 Implementation 

The GUIDANCE web server runs on a Linux cluster of 2.6GHz AMD Opteron processors, 

equipped with 4GB RAM per quad-core node.  At the moment, our cluster will allocate up to 16 

cores for GUIDANCE runs submitted through the web server, and the allocation of resources 

will grow with demand.  The server runs up-to-date versions of the supported multiple 

alignment programs and an in-house implementation of neighbor joining bootstrap tree 

reconstruction.  The HoT and GUIDANCE algorithms are implemented in Perl and C++.  The 

source code of GUIDANCE is also available on the website, for large scale analyses, which users 

may want to run locally using their own computational resources (http://guidance.tau.ac.il/). 

Running time depends on the dataset size (number and length of sequences) and (for 

GUIDANCE scores) on the number of bootstrap repeats.  The major component of the running 

time is the multiple alignment program used, thus MAFFT runs will be fastest and PRANK runs 

slowest.  To aid users with estimating running time for their datasets, we include a plot of 

average GUIDANCE and HoT running times using either MAFFT or PRANK for several dataset 

sizes, from 100 to 350 sequences, roughly 300 amino acids in length (Figure ‎6.2).  Note that 

GUIDANCE was run with the default 100 bootstrap repeats, but this number can be reduced to 

http://guidance.tau.ac.il/
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shorten the running time.  HoT running time depends on the number of branches in the guide 

tree, which increases linearly with the number of sequences.   

 

Figure ‎6.2:  Average run-time performance as a function of the number of sequences. 

Simulated protein sequences roughly 300 amino acids long were aligned using MAFFT 

and analyzed by GUIDANCE (blue diamonds) or HoT (red squares). In addition, running 

time for GUIDANCE on PRANK alignments is plotted with green triangles. Each data point 

represents ten replicates. 
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7 Discussion 

In this dissertation I have investigated computational methodologies for comparative sequence 

analysis.  The methods developed attempt to address challenges posed on the one hand by the 

multiple revolutions in sequencing technologies that repeatedly multiplied the breadth of our 

knowledge of sequences from single genes, to whole genomes, and to vast collections of 

genomes, and on the other hand by the realization that reliable processing and analysis of 

these data require complex models and sophisticated algorithms.  These two trends stretch the 

limits of computational power that grows at a much more modest rate of doubling 

approximately every two years (Moore 2005).  By comparison, the number of nucleotides 

stored in the EMBL Nucleotide Sequence Database doubles approximately every 16 months 

(Goldman and Yang 2008).  The increased complexity of models and algorithms for sequence 

analysis aggravate this growing chasm, because they require more processing power per 

nucleotide. 

The algorithmic enhancements developed here take the leading computational approaches in 

terms of accuracy and efficiency and attempt to combine and build upon their respective 

strengths.  Thereby, the proposed methods may provide the most accurate reconstruction of 

trees and MSAs that is computationally feasible for large sequence datasets.  Naturally, others 

have developed independent performance improvements for phylogeny and alignment.  As 

discussed below, many of these improvements can be combined with those developed here.  

For this reason, the methods developed in these studies were implemented as modular tools, 
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allowing for maximum reusability.  All software is freely distributed as open source libraries to 

encourage integration with other bioinformatics packages, and extensive user interfaces were 

developed for comfortable control of most features.  As much as possible, support is given to 

multiple operating systems to allow wide distribution.  Ultimately, a web server was set up in 

order to facilitate wide usage by non-computational researchers in molecular biology by 

providing an intuitive, graphical user interface and automatic processing of user uploaded data. 

7.1 Efficient and accurate phylogeny reconstruction 

Perhaps the greatest difficulty is in algorithms with exponential relationship between sequence 

number and computation time for a given dataset of homologous sequences.  This generally 

holds for state-of-the-art phylogeny reconstruction by probabilistic methods (ML and Bayesian 

approaches, reviewed in Section ‎1.3) because they attempt to search across the solution space, 

or the set of all possible tree topologies, which grows rapidly with the number of sequences 

(Cavalli-Sforza and Edwards 1967). 

This limitation of standard probabilistic approaches is the primary motivation for the 

phylogenetic methods developed in Chapter ‎3.  A hybrid ML-NJ approach was developed to 

take the best from two worlds – the accurate evolutionary modeling of the probabilistic (ML) 

paradigm and the computational efficiency of the distance-based paradigm (NJ is used here).  

The hybrid approach can be viewed as a speed improvement for probabilistic model-based tree 

reconstruction.  It can also be viewed as an accuracy improvement for distance-based tree 
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reconstruction.  In his discussion of distance-based methods, Felsenstein (2004) eluded to their 

limitation compared to ML methods: 

“When evolutionary rates vary from site to site in molecular sequences, distances 

can be corrected for this variation... In likelihood methods, the correction can use 

information from changes in one part of the tree in inform the correction in 

others. Once a particular part of the molecule is seen to change rapidly in the 

primates, this will affect the interpretation of that part of the molecule among the 

rodents as well. But a distance matrix method is inherently in capable of 

propagating the information in this way. Once one is looking at changes within 

rodents, it will forget where changes were seen among primates. Thus distance 

matrix methods must use information about rate variation substantially less 

efficiently then likelihood methods. This casts a cloud over their use, one which 

may prove hard to dispel.”  Felsenstein (2004, p. 175) 

The integration of ML methodology into distance-based phylogeny reconstruction aims to 

address exactly this weakness. The ML approach is used to fit a rich evolutionary model to a 

fixed input (MSA and tree topology) and then this model is used to efficiently reconstruct a 

more accurate tree using the distance-based NJ method.  Iterations of tree building and model 

fitting allow quick convergence on a more accurate tree without the need to calculate the 

computationally intensive likelihood function for many topologies, as in ML tree searches.  In 

fact, since most of the contribution to accuracy is in the second iteration then one round of 

likelihood optimization could suffice for the largest, most computationally challenging datasets. 
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Simulation studies demonstrated that models accounting for site-specific rates significantly 

improve distance estimation for proteins with average to high levels of rate variation.  This 

result demonstrates the detrimental effect of methods and models that make over-simplifying 

assumptions regarding sequence evolution.  And since distance-based methods such as NJ are 

statistically consistent (Atteson 1997), that is, will give an accurate tree when supplied with 

accurate distances, then we can expect significant improvement of the tree due to a significant 

improvement of the distance estimation.  This effect is evident in the evaluations of tree 

reconstruction by the ML-NJ hybrid.  Distance-based tree reconstruction achieved improved 

accuracy while still retaining the ability to process thousands of sequences in reasonable 

running time.  To summarize, the hybrid approach allows use of complex models for accurate 

tree reconstruction in an efficient manner that is not feasible with the standard probabilistic 

approaches such as ML tree search and Bayesian MCMC. 

7.1.1 Rapid maximum likelihood tree search 

In parallel with the development of our hybrid approach, dramatic efficiency improvements 

have been accomplished with the standard ML approach.  Most notably, the RAxML package 

has been developed over the years, implementing several significant efficiency enhancements 

that reduce the cost of each likelihood computation, make the search for the ML tree more 

efficient to reduce the number of likelihood computations, and to allow parallelization across 

multi-core platforms that are now widely available (Stamatakis, Ludwig, and Meier 2004; 

Stamatakis, Ludwig, and Meier 2005; Stamatakis 2006; Stamatakis, Hoover, and Rougemont 
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2008).  Rapidly reconstructed RAxML trees are still equally accurate or better than other more 

time-consuming implementations.  Thereby RAxML allows ML tree search for datasets as large 

as 25,000 sequences (Stamatakis 2006).  Another noteworthy implementation is GARLI (Zwickl 

2006) that is also capable of processing thousands of sequences.  Having said that, efficient ML 

tree search can still benefit from higher accuracy of the distance-based tree that is used as the 

starting point for the search, as discussed in Section ‎1.3 above.  Improved starting point will 

shorten the search for the ML tree, and possibly avoid local maxima in some scenarios.  

Furthermore, many of the efficiency enhancements developed for RAxML are also applicable to 

the use of probabilistic models in the hybrid method, and pairwise distance estimation can be 

easily parallelized because each pair is considered independently. 

Efficient distance-based reconstruction may still be the preferable solution for even larger 

trees.  For example, a tree of 200,000 rRNA sequences was reconstructed by an approximate 

distance-based method (Katoh and Toh 2007), and the Ribosomal Database Project (Cole et al. 

2009) now contains 1,237,963 small subunit rRNA sequences (Release 10, Update 20, as of May 

19, 2010) which theoretically could be analyzed as a single MSA.  Therefore, it seems that larger 

and larger datasets will continue to be limited to distance-based tree reconstruction.  The 

accuracy of such trees may be improved by the hybrid approach described here.   

7.1.2 Applications of the hybrid method 

The application of the SSRV model to bacterial phylogeny (Section ‎3.4) demonstrates the 

modularity of the ML-NJ hybrid and its potential for the integration of more advanced 
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evolutionary models in order to relieve the bias and error when model assumptions are 

violated by certain more challenging biological datasets.  Hopefully, this potential of the hybrid 

approach developed in this thesis will be used in future studies. 

Therefore, special attention was given to the distribution of the source code for the hybrid ML-

NJ implementation in a manner that will maximize its usability by the wider scientific 

community.  The algorithm was implemented as part of the SEMPHY package – an extensive, 

freely distributed, open source C++ library of probabilistic models and algorithms for phylogeny 

(http://compbio.cs.huji.ac.il/semphy/).  The library implements the range of complex 

algorithms in a modular, object-oriented fashion that maximizes code reusability.  For the non-

programmer, a user interface was designed to allow control of many of the algorithmic 

variations, model choice, and parameterization that may be beneficial in different scenarios.  

Over the past eight years the SEMPHY package has been maintained and freely distributed.  

According the ISI Web of knowledge, SEMPHY has been cited by 44 publications 

(http://apps.isiknowledge.com).  One such opportunity for the application of SEMPHY to the 

study of a specific phylogeny developed into a collaboration between the laboratories of Prof. 

Tal Pupko and Prof. Sara Lavi.  Our paper on the phylogeny of the protein phosphatase 2C 

superfamily is attached as an appendix to this manuscript. 

7.2 The effect of guide-tree accuracy on MSA accuracy 

The mutual dependency of alignment and phylogeny appears very one-sided in the literature of 

comparative sequence analysis.  Current phylogenetic studies rely on MSAs of nucleotide or 

http://compbio.cs.huji.ac.il/semphy/
http://apps.isiknowledge.com/
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amino-acid sequences and phylogeneticists take great care in preparing their MSAs to apply the 

best alignment algorithms, often followed by manual corrections, and filtering of reliable 

alignment blocks.  However, no such efforts are made to supply progressive alignment 

algorithms with the best possible guide trees.  MSAs are aligned according to guide trees built 

by inaccurate NJ or UPGMA.  Chapter ‎4 described an investigation of the contribution of 

improved phylogenetic accuracy using the hybrid ML-NJ within the widely used iterative 

scheme of phylogeny reconstruction and progressive alignment.  Results of simulation studies 

demonstrate that improved guide tree accuracy becomes significant when the number of 

sequences increases to the hundreds (this thesis and Liu et al. 2009). 

As with the iterative ML-NJ hybrid, the iterative scheme of phylogeny and alignment enjoys the 

advantage of modularity.  Although the simulation studies described here are limited to 

CLUSATW and PRANK, any progressive alignment program can be easily used with any 

phylogeny reconstruction method.  Hence, it is advisable to choose the most accurate 

phylogenetic method that is computationally feasible for the dataset in question.  For tens of 

thousands of rRNA sequences one might be limited to distance-based methods, but for a 

thousand sequences or less one can take advantage of the fast ML search algorithms 

mentioned in Section ‎7.1 above.  When the number of sequences drops to a hundred or less, 

the significance of the guide tree diminishes and simple NJ will do. 
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7.3 Alignment confidence 

Errors in MSAs cascade into downstream analyses that depend on them.  The reliance on an 

alignment as a fixed foundation for comparative sequence analysis is a noteworthy flaw in the 

vast majority of MSA-based research, with the exception of a handful of studies that address 

the uncertainty in the alignment using Bayesian methodology, especially MCMC (see Section 

‎1.7).  The severity of this flaw is intensified by the frequency of alignment errors.  It was 

estimated that a quarter of the residues are incorrectly aligned, even when the most accurate 

alignment algorithms are used (Nuin, Wang, and Tillier 2006).  Therefore, comparative 

sequence research is in dire need of reliable measures for alignment confidence that will 

enable identification of error-prone alignment regions. 

Chapter ‎5 described the development and evaluation of the GUIDANCE confidence measure.  

Guide tree uncertainty was shown to be a major factor in MSA uncertainty.  This observation 

gave rise to the GUIDANCE algorithm that uses bootstrap tree sampling to quantify the 

sensitivity of MSAs to guide tree uncertainty, and to estimate site-specific alignment 

confidence scores.  Evaluation using simulations and real protein benchmark data 

demonstrated the predictive power of GUIDANCE scores to accurately identify alignment 

errors. 

7.3.1 Limitations of the GUIDANCE method 

The use of bootstrap trees as guide trees for progressive sequence alignment may seem at first 

ill advised.  The bootstrap sampling technique deliberately introduces noise into the 
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reconstruction of the tree, creating trees with some errors in the branching order of the 

internal nodes.  When the process of progressive alignment reaches an erroneously 

reconstructed internal node, the alignment attempts to represents an ancestral sequence that 

did not exist in the true evolutionary history.  However, the fundamental assumption of our 

approach is that the conventionally used guide-tree most often contains numerous errors (e.g., 

Nelesen et al. 2008).  Therefore, the bootstrap sampling of perturbed trees provides a 

statistically justified representation of the level of error in the guide tree. 

Ideally, alignment and trees should be reconstructed simultaneously taking into account 

uncertainties in all related parameters:  tree topology, branch lengths, indel probabilities and 

indel length distribution, substation models, rate variation, etc.  Bayesian methods that use 

MCMC provide a suitable solution to achieve exactly that (see Section ‎1.7).  A by-product of the 

MCMC is a confidence measure in terms of the posterior probabilities of each alignment 

column.  Our approach can be viewed as related to MCMC, except that only uncertainty in tree 

topology is accounted for (and all other parameters are fixed).  In our method, the set of 

bootstrap trees is a sample from the space of possible tree topologies.  A trivial modification on 

our method would be to use a set of trees sampled using MCMC as guide trees instead of the 

bootstrap trees used in GUIDANCE.  The posterior probabilities of the MCMC sampling may be 

used to weight the different trees.  While this approach enjoys a stronger statistical 

justification, it is likely to increase the computational burden and prohibit the use of our 

method for large datasets. 
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Another point worth noting is that the GUIDANCE confidence score is absolutely dependant on 

uncertainty in the guide tree.  In principle, it is possible to have 100% bootstrap support for the 

guide tree, in which case the GUIDANCE confidence will be 100% for every alignment column.  

This may be true for some trees of very few sequences.  In such scenarios the HoT score (which 

is also implemented in the web server) may still be capable of detecting unreliably aligned 

regions because it is not affected by the guide tree.  However, in practice, one rarely sees 100% 

support for all tree branches.  Indeed, this does not happen in any of the 218 datasets in the 

BAliBASE benchmark, even though many of them contain fewer than ten sequences.  

Therefore, in general, it is recommended to use the GUIDANCE method that outperforms HoT 

on both the BAliBASE benchmark and simulations studies (Section ‎5.3.2‎4).   

A practical consideration with our approach is the increased running time required for (typically 

100) bootstrap repeats, reconstructing many guide trees and MSAs.  However, since we use 

simple NJ bootstrap trees, and the relatively fast MAFFT alignment algorithm, this increased 

running time will often be negligible in comparison to the running time of downstream analysis, 

such as Bayesian phylogeny reconstruction or positive selection inference. 

7.3.2 The GUIDANCE web server and usage in downstream MSA-based analyses 

Chapter ‎6 described the GUIDANCE web server and usage of GUIDANCE confidence scores in 

preparation for MSA-based analyses.  The Vpu case study (Section ‎6.2) was chosen to 

demonstrate the utility of the GUIDANCE method.  The field of HIV genomics sets many 

challenges for comparative sequence analysis.  First and foremost, the virus is a rapidly evolving 
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pathogen, which is a major obstacle for disease control, but also an asset and a challenge for 

evolutionary investigation via comparative sequence analysis.  As evident from GUIDANCE 

results for the MSA of Vpu sequences, the alignment of HIV and SIV sequences is often difficult 

and can be expected to harbor error-prone regions. Second, and as a consequence of rapid 

evolution, the intensive efforts to characterize HIV genetically yielded tens of thousands of 

genomic sequences that represent the extensive variance of these viruses.  Effective utilization 

of such vast datasets of homologous sequences requires both accurate and computationally 

feasible methodologies.  Third, the evolutionary perspective has been used extensively to 

derive insights into HIV biology and the development of the global pandemic.  Both the 

(repeated) zoonotic transfers from apes to humans and the adaptation and diversification of 

HIV subtypes in humans were investigated using evolutionary approaches.  Specifically, 

phylogenetic analyses were used to infer selection forces acting on specific genes and specific 

residues in the viral genome (e.g., Leitner et al. 1996; Nielsen and Yang 1998; Crandall et al. 

1999; Zanotto et al. 1999; Draenert et al. 2004; Leslie et al. 2004; Penn et al. 2008).  However, 

such methodologies, especially site-specific positive selection inference, are sensitive to 

alignment errors that inflate their predictions  (Wong, Suchard, and Huelsenbeck 2008; 

Schneider et al. 2009). 

The GUIDANCE server offers researchers tools to deal with these challenges.  Variation on 

server usage in preparation for different types of phylogenetic analysis may include:  (i) choice 

between the most accurate alignment by PRANK and the most efficient alignment by MAFTT 
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that can handle thousands of sequences (further tuning of the compromise between accuracy 

and speed is offered via advanced parameters passed to MAFFT);  (ii) manual review of a color-

coded MSA for quick visual assessment of large datasets, or numerical tables of scores for 

automatic processing;  (iii) Automatic removal of low-scoring sequences re-alignment of the 

dataset to avoid the disruptive effect of these sequence;  (iv) filtering reliable columns in 

preparation to subsequent analysis such as phylogeny reconstruction. 

GUIDANCE is recommended for use in conjunction with any and all MSA-based studies, since 

virtually all MSAs are affected by some degree of uncertainty.  The type of downstream analysis 

may dictate different modes of running GUIDANCE and of usage of GUIDANCE scores.  It is 

generally recommended to use GUIDANCE to filter out badly aligned sequences and re-align 

the data, since such sequences usually disrupt the alignment among the other sequences, 

which could be reliably aligned otherwise.  However, the option for removing alignment 

columns may or may not be used, depending on the expected sensitivity of the downstream 

analysis to alignment errors. 

Perhaps the most widely used MSA-based analysis is phylogeny reconstruction.  It is common 

practice to filter gap-less blocks in the alignment and only use those columns for phylogeny 

reconstruction.  Gblocks (Castresana 2000; Talavera and Castresana 2007) is usually used for 

this purpose, but a comparative evaluation (in Section ‎5.3.2 above) demonstrated that the 

accuracy of filtering columns containing alignment errors by GUIDANCE is superior over 

Gblocks.  The merits of removing columns for phylogeny reconstruction may vary between 
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different datasets and different evolutionary scenarios because of the delicate balance 

between filtering noise and loss of evolutionary information.  Therefore, it is debated whether 

columns should be removed for phylogeny reconstruction (Gatesy, DeSalle, and Wheeler 1993; 

Giribet and Wheeler 1999; Aagesen 2004).  Furthermore, the choice of cutoff on the confidence 

scores clearly affects the tradeoff between the sensitivity and the specificity in the 

identification of alignment errors.  There are no specific recommended values for these cutoffs 

because their effect on the alignment varies considerably among datasets.  The web server 

provides a list of cutoffs with their respective effects on the remaining proportion of 

sequences/columns and users are encouraged to experiment with several cutoffs, especially 

when removing sequences and re-aligning the dataset. 

Several phylogenetic methodologies attempt to detect evolutionary patterns in a site-specific 

manner, and these should be considered in light of the evolutionary phenomena that are 

sought after.  On the one hand, Bayesian methods for site-specific rate inference as 

implemented in the Consurf web server (Landau et al. 2005) are usually robust to a few badly 

aligned residues in a column.  It stands to reason that a column corresponding to a conserved 

site will still be inferred as conserved as long as most of the data are correctly aligned.  On the 

other hand, as mentioned above, site-specific prediction of positive selection using the Ka/Ks 

measure, as in the Selecton web server (Stern et al. 2007), may be more vulnerable to 

alignment errors (Wong, Suchard, and Huelsenbeck 2008; Schneider et al. 2009).  These 

methods seeks fast evolving sites that are generally more difficult to align.  A few badly aligned 
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residues may inflate the Ka/Ks estimate for the column and lead to false inference of positive 

selection.  Moreover, Ka/Ks inference of positive selection is only considered if the whole gene 

passes the statistical significance threshold in a likelihood ration test (LRT).  Therefore, the 

inclusion of badly aligned columns in this test may be detrimental for certain genes that 

erroneously pass the LRT threshold due to the inflated Ka/Ks scores in these columns.  Similar 

considerations of alignment confidence may be also applicable to other analyses involving site-

specific rate inference such as rate-shift detection (Gu 1999; Moreira, Le Guyader, and Philippe 

1999; Knudsen and Miyamoto 2001; Wang and Gu 2001; Pupko and Galtier 2002; Abhiman and 

Sonnhammer 2005; Penn et al. 2008). 

The removal of a whole column because of a subgroup of badly aligned residues results in loss 

of reliable information from other confidently aligned residues in the same column.  Less 

radical use of the GUIDANCE scores may minimize information loss.  GUIDANCE calculates 

confidence scores for individual residues in the MSA.  Low-scoring residues may be masked, for 

example by substituting them with “missing data” or gap characters.  In phylogenetic analyses 

this procedure will prevent biases due to the badly aligned residues, such as the tendency for 

over-prediction of positive selection (Schneider et al. 2009), while still allowing use of the 

evolutionary information in rest of the column.  Thereby, a finer separation of signal from noise 

can be achieved. 
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7.3.3 Wide distribution of GUIDANCE in the scientific community 

The theme of modularity is common to all the hybrid methodologies developed in this thesis.  

The GUIDANCE confidence measure is applicable to any and all MSA algorithms based on the 

progressive alignment technique.  This strength distinguishes it from other confidence 

measures discussed in Section ‎5.1 above (e.g., TCOFFEE) which are specific to individual 

alignment programs.  The only requirements that GUIDANCE makes is that the alignment 

program receives an input guide tree.  Some programs do not offer this feature, but this should 

be easy to implement in any algorithm that is based on progressive alignment.  Therefore, 

GUIDANCE enjoys a broad relevance. 

As with the distribution of the hybrid ML-NJ as part of the SEMPHY package (Section ‎7.1.2 

above) considerable efforts were invested in making GUIDANCE available to the scientific 

community.  Due to its general applicability to all MSA-based studies, the GUIDANCE measure 

should be relevant to wider population of potential users.  Here we were able to provide a web 

server to avoid the need for software installation, provide a more user-friendly graphical 

interface and extensive utilities such the automatic alignment filtering by sequences and/or 

columns.  A share of a large Linux cluster was dedicated to running server jobs managed by a 

high-throughput queuing system.  Despite this investment the use of GUIDANCE is offered free 

of charge.  Therefore, we hope to target a wider audience.  Since its publication five weeks ago, 

the site received 65 visitors from 13 countries.  51 jobs were submitted from 19 unique IP 
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addresses.  We are doing our best to promote usage of GUIDANCE by conducting workshops 

and presentations in local and international conferences. 

We also made all software involved in this project publicly available as open source.  A 

downloadable, open-source program allows researchers conducting large scale computational 

analysis to run analyses on their high-throughput infrastructures.  Furthermore, the open 

source enables fellow bioinformaticians to reuse and integrate GUIDANCE in their development 

of alignment algorithms, which is especially important for taking advantage of the modularity 

and generality discussed above. 

7.4 Concluding remarks 

The value of advances in bioinformatics methodology goes beyond any specific applied study 

such as the reconstruction of the bacterial phylogeny (Section ‎3.4), the PP2C superfamily 

(Appendix A), or the analysis of the Vpu protein (Section ‎6.2).  The full value of a computational 

tool is found in the sum of small contributions to all applied studies that use it, and also in 

subsequent methodological developments that are based on it.  During the studies described in 

this thesis I have worked with that intention in mind.  I can only hope that some of the 

innovations proposed here will prove valuable to future research in molecular biology. 
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Appendix A:  Evolution of the Metazoan Protein Phosphatase 2C 

Superfamily 

This appendix is based on a published manuscript: 

Stern, A., Privman, E., Rasis, M., Lavi, S., Pupko, T.  2007.  J.  Mol.  Evol.  64:  61-70 

A.1  Introduction 

The development of improved accuracy phylogenetic methods led me to a collaboration with 

the laboratory of Prof. Lavi, that studies protein phosphatase 2C superfamily.  Reversible 

protein phosphorylation is a major regulatory mechanism of cellular functions such as stress-

activated signal transduction, mitogenic signal transduction, and cell cycle control (e.g., Sun and 

Tonks 1994; Hanada et al. 2001).  Protein kinases have been in the spotlight for several decades 

(Burnett and Kennedy 1954; Bolen 1995; Shokat 1995; Yeh and Pellegrini 1999; Schlessinger 

2000; Cowan and Storey 2003) leading to the recent development of drug therapy using kinase 

inhibitors (reviewed in Krause and Van Etten 2005).  Yet far less focus has been given to the 

kinases counterparts in cell regulation, the protein phosphatases.  It is becoming clear that the 

interplay between kinases and phosphatases is quite complex.  Thus, in order to fully 

understand the process of phosphorylation, it is imperative to focus research on phosphatases 

as well as on kinases.  

Protein serine/threonine phosphatases are divided into four structurally distinct superfamilies 

(Cohen 1989; Shenolikar 1994; Barford, Jia, and Tonks 1995; Wera and Hemmings 1995): PP1, 

PP2A, PP2B, and PP2C.  The PP2C superfamily of phosphatases (also referred to as PPM) is 

http://www.springerlink.com/content/d2077x247151271h/
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defined by distinct amino acid sequence and three-dimensional (3D) structure (Tamura et al. 

1989; Mann et al. 1992; Wenk et al. 1992).  The PP2C superfamily does not seem to be 

evolutionary related to PP1, PP2A and PP2B, which are all multi-subunit enzymes.  This study 

focuses on the PP2C superfamily as an embodiment of the evolutionary diversity of protein 

phosphatases. 

A.1.1  PP2C Functions   

PP2C is a monomeric enzyme which displays broad substrate specificity.  Distinguishing 

characteristics of PP2C are its: i) absolute requirement for divalent cations, mainly Mg+2 or 

Mn+2, ii) distinctive structural features, iii) insensitivity to inhibition by Okadaic acid (Barford, 

Jia, and Tonks 1995; Wera and Hemmings 1995) .  At least 15 distinct PP2C human paralogs 

have been found in mammalian cells (Table A.1).  All of these PP2Cs have Mg+2 and/or Mn+2 

dependent phosphatase activity against artificial substrates in vitro (Komaki et al. 2003). 

The majority of PP2Cs are involved in regulation of stress activated protein kinase (SAPK) 

cascades which relay signals in response to external stimuli (Meskiene et al. 2003).  These 

cascades are a subfamily of the mitogen–activated protein kinase (MAPK) cascades.  Different 

PP2Cs negatively regulate SAPK pathways at different levels.  For instance, PP2Cβ inhibits the 

TAK1 pathway (Hanada et al. 2001; Li et al. 2003) and is involved in the NF-kappaB pathway 

(Prajapati et al. 2004).  PP2Cα inactivates the p38 pathway and the c-Jun amino-terminal kinase 

(JNK) pathway (Takekawa, Maeda and Saito, 1998), and is additionally involved in the Wnt 

signalling pathway (Strovel, Wu, and Sussman 2000).  
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Recent studies have demonstrated that the PP2C superfamily is also associated with eukaryotic 

cell cycle processes, which are controlled by the ordered activation and inactivation of cyclin-

dependent protein kinases (CDKs).  Reversible protein phosphorylation is one of the 

mechanisms through which extra-cellular and intra-cellular signals regulate CDKs (Cheng et al. 

1999; Cheng, Kaldis, and Solomon 2000).  Additionally, we have previously reported that over-

expression of PP2Cα activates the expression of the tumour suppressor gene TP53/p53, which 

leads to G2/M cell cycle arrest and apoptosis (Ofek et al. 2003).  Thus, the PP2C superfamily 

appears to be directly involved in several cell regulation and cell signalling processes.  In fact, 

many PP2C members have been reported to inactivate CDK and MAPK family kinases by 

dephosphorylating a conserved threonine residue on the so called T-loop of these kinases 

(Marley et al. 1996; Cheng et al. 1999; Takekawa et al. 2000), implicating that the PP2C 

superfamily may be general T-loop phosphatases.  
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Table A.1:  The 15 human PP2C paralogs and their known cellular function 

PP2C 

variants(a) 

Function \ Cellular process Expression(b) Reference 

PP2Cα 

P35813 
- Negative regulation of p38-MAPK and JNK 

cascades via dephosphorylation of MKK4, 

MKK6 and p38 

- Involvement in cell cycle regulation via 

interaction with CDKs 

- Activation of the p53-pathway (cell cycle 

arrest) 

Ubiquitous (Takekawa, Maeda, 

and Saito 1998; 

Cheng, Kaldis, and 

Solomon 2000; Ofek et 

al. 2003) 

PP2Cβ 

O75688 

Negative regulation of p38-MAPK and JNK 

cascades via dephosphoralytion of TAK1 

Skeletal 

muscle↑  

Heart↑ 

(of specific 

splice variants) 

(Terasawa et al. 1993; 

Gaits, Shiozaki, and 

Russell 1997; Marley 

et al. 1998; Hanada et 

al. 2001; Seroussi et al. 

2001) 

PP2Cγ 

O15355 

Necessary for the formation of a functional 

spliceosome 

Widely 

expressed.  

Testis, skeletal 

muscle, and 

heart↑  

(Travis and Welsh 

1997; Murray, 

Kobayashi, and Krainer 

1999) 

Wip1 

O15297 

Mediation of a negative feed-back loop of 

the p38-MAPK-p53 pathway: inactivation of 

p53, relief of cell-cycle arrest 

 (Takekawa et al. 2000; 

Yamaguchi et al. 2005) 

PP2Cε 

Q5SGD2 

A possible role of PP2Cε is in the regulation 

of the IL-1-TAK1 signaling pathway 
 (Li et al. 2003) 

PP2Cζ 

Q810X6 

The exact function of this gene is not yet 

known. It has been shown that PP2C ζ is able 

to associate with ubiquitin conjugating 

enzyme 9 

Testis↑ (Kashiwaba et al. 

2003) 

PP2Cη 

Q96M16 

Putative nuclear localization signal (NLS) 

suggests that PP2C η dephosphorylates a 

unique substrate(s) in the cell nucleus 

 (Komaki et al. 2003) 

POPX1 

Q7LAF3 

Inactivation of the p21 (Cdc42/Rac)-

activated kinase PAK  

Brain↑ 

Testis↑ 

(Koh et al. 2002) 
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PP2C 

variants(a) 

Function \ Cellular process Expression(b) Reference 

FEM2/ 

POPX2 

P49593 

- Inactivation of the p21 (Cdc42/Rac)-

activated kinase PAK 

- Activation of Calmodulin-dependent kinase 

II 

- Promotion of apoptosis 

Ubiquitous (Koh et al. 2002) 

ILKAP 

Q9H0C8 

Modulation of cell adhesion and growth 

factor signaling through association with 

integrin linked kinase 

 (Leung-Hagesteijn et 

al. 2001) 

TA-PP2C 

NP_6448

12.1 

Co-expression with IL-2 in T-cells  (Mao et al. 2004) 

PPM1K 

Q56AN8 

Function unknown. Annotated as PP2C 

mitochondrial phosphatase 

Mitochondria   

PPM1H/ 

NERPP 

Q6PI86 

Signal transduction pathway for neuronal 

inhibitory factors in CNS myelin 

Brain↑ (Labes, Roder, and 

Roach 1998) 

PDP1 

Q9P0J1 

Dephosphorylation and concomitant 

reactivation of the alpha subunit of the E1 

component of the pyruvate dehydrogenase 

complex 

Skeletal 

muscle↑ 

(Behal et al. 1993; 

Lawson et al. 1997; 

Huang et al. 1998) 

PDP2 

Q9P2J9 

Dephosphorylation and concomitant 

reactivation of the alpha subunit of the E1 

component of the pyruvate dehydrogenase 

complex 

Liver↑ (Huang et al. 1998) 

(a)
 The first row shows the name of the human gene while the second row shows the SWISS-PROT 

(http://us.expasy.org/sprot/) or GenBank (Benson et al.;  Guindon et al. 2005) identifiers. 
(b)

 ↑ indicates up-regulation in the specified tissue.  Cells were left blank when no expression data were available for 

the gene. 

A.1.2  Phylogenetic Study of PP2C   

An evolutionary comparison of kinomes across species (Manning et al. 2002) has demonstrated 

the value of a phylogenetic study of kinases.  This enabled mapping kinases specific to each 

http://www.pdg.cnb.uam.es/UniPub/iHOP/nv?ID1=89493&ID2=103306
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lineage, as well as delineating the pathways involving kinases shared throughout various 

evolutionary lineages.  Similar to families of protein kinases, the multiplicity of PP2C proteins 

suggests a broad functional diversity of these proteins.  Thus, the aim of this study is to conduct 

a comprehensive genomic evolutionary analysis of all known members of the PP2C superfamily 

in Metazoa.  This is the first analysis of its kind undertaken in the study of the PP2C superfamily, 

and as such promises to be highly informative in characterizing protein isoform diversification.  

Consequently, we performed an extensive search of all genomic databases for PP2C genes.  We 

then conducted a phylogenetic analysis of all PP2C members found, with the aim of assigning 

paralogy and orthology relations to each sequence found.  These assignments enabled us to 

predict functions of previously unidentified genes in the superfamily, as well as explore the 

differences between the families within the PP2C superfamily and estimate the relative dates of 

the diversification events.  We thereby explore the breadth of PP2C functional conservation 

throughout the metazoan kingdom. 

A.2  Methods 

A.2.1  Search for PP2C Members in Metazoa  

Sequences were retrieved from the following databases: Genbank (www.ncbi.nlm.nih.gov) 

(Benson et al. 2005), ENSEMBL (www.ensembl.org) (Hubbard et al. 2005), FLYBASE 

(www.fruitfly.org) (Stapleton et al. 2002) and WORMBASE release WS130 (www.wormbase.org) 

(Harris et al. 2004). Initially, all fully sequenced eukaryote genomes (Homo sapiens, Pan 

troglodytes, Mus musculus, Rattus norvegicus, Canis familiaris, Bos taurus, Monodelphis 

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/
http://www.fruitfly.org/
http://www.wormbase.org/
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domestica, Gallus gallus, Xenopus tropicalis, Danio rerio, Takifugu rubripes, Tetraodon 

nigroviridis, Drosophila melanogaster, Anopheles gambiae, Apis mellifera, Caenorhabditis 

elegans, Saccharomyces cerevisiae) were screened for PP2C sequences using BLAT (Kent 2002), 

TBLASTN (Altschul et al. 1990), and the Orthologue Prediction section of ENSEMBL. Sequences 

uncovered in these stages were filtered according to two criteria: (i) due to an unreliable 

alignment containing excess gaps, all yeast sequences were discarded, (ii) orthologous 

sequences for which there was a significant deviation from the PP2C signature defined in 

PROSITE (Bairoch and Bucher 1994; entry PS01032) were discarded. Accession numbers of all 

sequences used in the study are available as supplementary material. 

A.2.2  Sequence Alignment and Phylogenetic Reconstruction 

Multiple sequence alignment (MSA) was performed using the MUSCLE program version 3.52  .  

Maximum likelihood based phylogenetic reconstruction was performed with the PhyML 

program (Halanych 2004) using among site rate variation with 4 discrete rate categories, and 

the JTT model of sequence evxolution.  Node supports were determined by performing 100 

bootstrap replicates.  Bootstrap values higher than 70% were considered significant. 

Due to the extended evolutionary time spanned by the sequences in this analysis and the low 

similarity between different paralogs, the resulting alignment includes regions which are 

difficult to align as well as many gaps.  This is a general problem when analysing superfamily 

genes, and one must verify that the inferred phylogeny does not depend on those parts of the 

alignment which are uncertain.  In order to test the robustness of the results to the alignment's 
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validity, we ran the Gblocks program  on the alignment, with the aim of removing poorly 

aligned regions, and then performed the phylogenetic analysis on the resulting positions.  The 

new tree was found to be essentially identical to the tree which we reported based on the full 

alignment.  All minor differences between the trees were supported by low bootstrap values in 

the new tree.  The settings used to run Gblocks, together with the resulting reduced alignment 

and resulting phylogenetic tree are given in the supplementary material.  

A specific sequence was considered part of a group if it belonged to a monophyletic clade in the 

tree.  For this purpose, it was assumed that the root of the tree is on one of the branches 

leading to one of the more anciently derived groups (as is later defined in the Results section). 

A.2.3  Site-Specific Evolutionary Rate Analysis 

The conservation pattern of the PP2C superfamily was analyzed by estimating site-specific 

evolutionary rates, using the Bayesian approach of the Consurf server (Mayrose et al. 2004; 

Landau et al. 2005). The analysis was conducted using the reconstructed PhyML tree. Site-

specific positive selection was analysed using the Selecton server (Doron-Faigenboim et al. 

2005), using the Bayesian method (Yang et al. 2000). Once again, the reconstructed PhyML tree 

was given as input. 
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A.3  Results 

The search for PP2C members in the human genome led to the identification of 15 members 

(table A.1).  Each of these members was found throughout the vast majority of the vertebrate 

genomes searched, with the exception of a few orthologs not found.  It is unclear whether 

these exceptions stemmed from incomplete sequencing or from gene losses in these 

organisms.  All the 15 groups of orthologs clustered as monophyletic groups in the phylogenetic 

tree reconstructed (Figure A.1), providing firm phylogenetic support for the hypothesis 

whereby the PP2C superfamily arose following a series of duplication events, and for the 

classical classification of the PP2C family members.  Furthermore, the phylogenetic tree 

enabled assigning annotation to previously unidentified genes according to their location on 

the phylogenetic tree.  
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Figure A.1:  Maximum 

likelihood phylogenetic tree 

of PP2C, with the TA group 

used as an outgroup.  For 

brevity, the tree presented 

here shows a collapsed 

version of the full tree, 

where all clades 

representing vertebrate 

orthologs were collapsed, as 

were all clades of 

orthologous insects 

(collapsed clades are shown 

as black triangles).  The 

lengths of the branches 

leading to the collapsed 

groups are the lengths of the 

branches leading to the 

ancestral groups in the 

original tree.  Major PP2C 

groups are shaded in color 

for clarity.  The branch 

marked in yellow represents 

a putative gene duplication 

event with subsequent gene 

loss in vertebrates in one of 

the duplicants.  A full tree in 

Newick format is available in 

the supplementary material. 

 

A.3.1  Two Types of PP2C 

Mammalian PP2Cs have been previously classified into two subgroups according to differences 

in amino acid sequence motifs. Group 2 consists of PP2Cη, PP2Cζ, and PPM1H, while group 1 



xi 

 

includes all other PP2Cs (Komaki et al. 2003). TA-PP2C, discovered only a year later (Mao et al. 

2004), was not classified as belonging to any of the two groups . Groups 1 and 2 differ in their 

PP2C signature, as well as in the other sequential motifs found to characterize the PP2C 

superfamily (Komaki et al. 2003). All residues forming the catalytic domain (Das et al. 1996) are 

part of the PP2C signature and these additional motifs. 

The phylogenetic reconstruction of the PP2C family (Figure A.1) shows that the three families 

belonging to group 2 (PP2Cη, PP2Cζ, and PPM1H) form a monophyletic clade (100% bootstrap), 

supporting the previous finding whereby group 2 is characterized by a unique sequence 

(Komaki et al. 2003). Since the differences between groups 1 and 2 are displayed in residues 

which surround the catalytic site, this may hint at a functional divergence of the PP2C 

superfamily into two functionally distinct groups. 

A.3.2  Mapping of PP2C Duplications 

Nine different clades in the tree comprise members in protostomes.  These sequences include 

sequences belonging to monophyletic PP2C groups (TA-PP2C, ILKAP, PP2Cγ, Wip1, and PP2Cε), 

as well as sequences assumed to have been derived from ancestral forms of PP2C prior to their 

duplication.  For example, a worm sequence which forms an outgroup of the PDP1 and PDP2 

vertebrate clades is assumed to be derived from the ancestral sequence of PDP1 and PDP2 

prior to their duplication, and will hereby be referred to as the PDP1|PDP2 ancestrally derived 

sequence.   Similarly, there is a protostome ancestrally derived sequence of POPX1|FEM2, 

PP2Cα|PP2Cβ, group 2 (PP2Cη|PP2Cζ|PPM1H), and PDP1|PDP2.  Consequently, it appears that 
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much of the PP2C diversification occurred before bilaterian diversification.  On the other hand, 

the nine paralogous groups PP2Cα, PP2Cβ, POPX1, FEM2, PP2Cζ, PPM1H, PPM1K, PDP1, and 

PDP2 are only present in vertebrates.  Therefore, the mapping of the emergence of each one of 

the PP2C groups during evolution is possible, as depicted in Figure A.2.  Nine groups emerged 

prior to the divergence of protostomes, whilst another nine were created by duplications prior 

to the divergence of vertebrates.  

 

Figure A.2:  The two active periods of gene diversification by duplication are marked on 

the currently accepted species tree  by arrows.  The rectangle represents the putative 

emergence of the groups: PP2Cα, PP2Cβ, PPM1K, FEM2, POPX1, PP2Cζ, PPM1H, PDP1, 

and PDP2.  The diamond represents the latest possible dating of the emergence of the 

groups: Wip1, ILKAP, PP2Cγ, TA-PP2C, PP2Cε , PP2Cα|β, PDP1|PDP2, group 2, and 

FEM2|POPX1. 

More precise mapping and relative dating of the different gene duplication events proved to be 

more difficult.  A majority of the more ancient duplications were supported by very low 
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bootstrap values on the tree (Figure A.1).  Thus, it is currently impossible to map which 

members were created by each ancient duplication event, and to determine the order of 

duplications.  This is further aggravated by lack of available genomes, specifically in non-

vertebrate chordates and poriferans.  However, the formation of four more recent duplications 

was supported by very high bootstrap values.  These duplications (PP2Cα versus PP2Cβ, PDP1 

versus PDP2, PP2Cζ versus PPM1H, and POPX1 versus FEM2) occurred before vertebrate 

diversification, and are supported by a single form in non-vertebrates (sea urchin and/or 

insects).  For example, the clades of PDP1 and PDP2 do not include any sea urchin sequences, 

yet a sea urchin sequence forms an outgroup.  An additional duplication, between PP2Cη and 

the PP2Cζ|PPM1H ancestor, is more difficult to map precisely.  According to the tree, the 

duplication occurred after the speciation of insects, and before the speciation of vertebrates.  

However, it is unclear whether this duplication occurred before or after the speciation of sea 

urchin, due to the location of the two sea urchin sequences (Figure A.1; denoted as Group 2 S.  

purpuratus 1 and 2).  

A.3.3  Protostome-Specific Duplications 

The phylogenetic tree supports an ancient duplication event in the ancestral PP2Cγ (Figure A.1; 

marked in yellow) where the gene was apparently lost in the lineage leading to vertebrates, yet 

remained in protostomes.  This novel paralog further underwent another duplication in insects.  

Yet another insect-specific duplication is evident, as is apparent by the existence of both 

Alpha|Beta D. Melanogaster 2 and Alpha|Beta D. Melanogaster 1 (see Figure A.1).  In both 
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these insect-specific duplications, no sequence is available from A. Gambiae, which may 

indicate other a loss in this lineage or missing data in the A. Gambiae genome.   Little is known 

of these expansions in insects, yet they are supported by EST evidence in D. Melanogaster 

(UCSC genome browser; (Kent et al. 2002)), ruling out the hypothesis whereby these sequences 

represent pseudogenes. 

A.3.4  Mapping Functional Regions in PP2C  

We performed a comprehensive analysis of the pattern of amino acid conservation throughout 

the MSA of the PP2C superfamily. This analysis took into account the phylogenetic tree, thus 

enabling more precise inference of conservation of amino acid sites (Pupko et al. 2002). Two 

crystal structures of PP2C members exist in the Protein Data Bank (Berman et al. 2000) – one of 

the human PP2Cα (Das et al. 1996) and one of the Mycobacterium Tuberculosis PP2C (Pullen et 

al. 2004).  The conservation pattern obtained for the PP2C superfamily was mapped onto the 

Van-der-Waals surface of PP2Cα, since it is the only metazoan PP2C with a known 3D structure. 

A clear pattern of high conservation is apparent throughout the N-terminus of the protein, 

whilst the C-terminus of the protein is highly variable. The variability of the C-terminus is 

expected, since the C-terminus of the PP2Cα is unique to this family, and may serve as a 

substrate recognition domain in the cleft that is created between it and the catalytic domain 

(Das et al. 1996). However, the relatively high conservation pattern of the N-terminus is more 

surprising. On the one hand, the results reinforce the previous knowledge of functionally 

important sites in PP2C, showing that the nine catalytic residues found in PP2Cα (Das et al. 
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1996) are indeed highly conserved. More surprisingly, over 50 additional sites appeared to be 

highly conserved. Whilst some of these sites cluster around the catalytic site in the globular N-

terminus, others form the cleft between the N-terminus and the C-terminus and form part of 

the bulk above the catalytic region (according to the orientation in Figure A.3). The high 

conservation of the N-terminal part of the cleft suggests that there may be a shared mechanism 

of this cleft throughout all the PP2C families. 

 

Figure A.3:  The conservation 

pattern of the PP2C superfamily as 

inferred by Consurf.  Conservation 

scores are color-coded onto the Van 

der Waals surface of PP2Cα, where 

bordeaux corresponds to maximal 

conservation, white corresponds to 

average conservation and turquoise 

corresponds to maximal variability.  

The Mg2+ ions and associated water 

molecules are shown in yellow, and 

the nine previously identified 

catalytic sites (Das et al. 1996) are 

shown in red.  These nine sites also 

attained the highest level of 

conservation in the analysis.  

Arrows show the globular N-

terminus region, and the C-

terminus tail. 

In order to study the differences between the PP2C families, pairs of PP2C families were 

analyzed for site-specific positive selection using the Selecton server (Doron-Faigenboim et al. 

2005).  The underlying assumption was that following the gene duplication events which 
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created the two families, both genes underwent a specialization process.  Such a process may 

have led to a rapid fixation of mutations due to positive selection forces.  Thus, all pairs of PP2C 

families which most recently diverged (PP2Cα-PP2Cβ, PDP1-PDP2, FEM2-POPX1, PPM1H-PP2Cζ) 

were analysed.  The analysis of pairs of sequences as opposed to an analysis of the entire 

superfamily enables a more reliable MSA at the codon level.  However, in all of these families 

no site-specific or global positive selection was observed.  This may be due to the fact that 

purifying selection within each of the families obscures the footprint of positive selection which 

the families underwent, and due to the small species sampling.  

Additional evidence for gene specialization may be obtained by analysing insertion and deletion 

events in the different gene families.  To this end, the MSA was utilized as a rough indicator of 

insertion and deletion events (using visual inspection).  A schematic drawing was created 

depicting PP2C domains common to all groups, as well as those unique to specific groups 

(Figure A.4).  Only such blocks which are well defined and clearly observed when viewing the 

alignment were depicted.  Furthermore, these blocks were flanked by anchors of regions which 

are conserved throughout the entire alignment.  This analysis suggests that the evolution of the 

PP2C family included several significant insertion or deletion events which may have led to the 

specialization of the duplicants. 
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Figure A.4:  A schematic drawing of the PP2C superfamily alignment.  Bars represent 

blocks which are unique to specific groups.  Grey rectangles represent the rest of the 

alignment, including all regions which are common to all PP2C proteins.  Coordinates of 

the blocks (according to the MSA) appear underneath each block.  The MSA is available as 

part of the supplementary material. 

A.4  Discussion 

In this study, we present an analysis of PP2C evolution.  The reconstructed phylogeny displays 

the relationship between PP2C paralogs and orthologs throughout Metazoa, revealing the 

existence of at least 15 PP2C groups which were created via gene duplication.  Analysis of the 

PP2C superfamily suggests that two waves of duplications were responsible for the creation of 

the majority of the PP2C members.  The first wave of duplications presumably led to the 

formation of functionally different groups which specialized in different catalytic processes.  

Our analysis suggests that this wave took place before the divergence of bilaterians.  

Presumably, these ancient duplications occurred successively in a short time frame 

(represented by short branches between the different groups; see Figure A. 1), rendering it 

difficult to determine the order of the duplication events (as is evident from the low bootstrap 

support on these branches).  The second wave of duplications presumably led to the formation 
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of tissue specific groups, and most likely took place at the beginning of vertebrate evolution.  

More precise timing of these duplication events is still beyond reach due to the lack of 

sequence data in poriferans.  

Extensive gene duplication events during early chordate evolution have been previously 

reported (e.g. Miyata and Suga 2001; McLysaght, Hokamp, and Wolfe 2002). These extensive 

events may have been the result of a whole genome duplication, or a series of partial 

chromosomal block duplications. These duplications, which took place in early vertebrate 

evolution, are thought to account for the existence of the four HOX gene clusters (Larhammar, 

Lundin, and Hallbook 2002; Prince 2002), as well as for the four different MHC gene clusters 

(Abi-Rached et al. 2002). Numerous studies have found protein families with a pattern of 

evolution similar to the pattern of PP2C found here (e.g. Miyata and Suga 2001; Wakeham et al. 

2005). Many of these families include kinase and phosphatase families involved in cell signaling. 

Furthermore, a comparative study comparing kinome catalogs throughout different species 

(Manning et al. 2002) revealed that the creation of functionally distinct kinase families occurred 

during early metazoan evolution. Thus, we postulate that the evolution of signal transduction 

occurred in two major active periods. The first, occurring before metazoan radiation, may have 

been driven by the increase in complexity of multicellular organisms. This required more 

sophisticated signaling between and within cells. Furthermore, the more complex 

developmental mechanisms also required a more elaborate network of signaling proteins. This 

suggests that the more anciently derived PP2Cs evolved following a requirement for new 
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signaling pathways. For example, the more anciently derived Wip1 and ILKAP display this 

pattern: whereas Wip1 evolved as part of the cell-cycle pathway, ILKAP evolved to participate in 

cell adhesion and growth factor signaling.  

The second active period, before vertebrate diversification, occurred concomitantly with the 

development of tissues such as skeletal muscle and the nervous system. Indeed, the transition 

between non-vertebrates and vertebrates is believed to be one of the major leaps in 

complexity during evolution, involving the evolution of cells such as the neural crest, the brain, 

and the spinal cord (Gilbert 2001). Insights into this phenomenon are evident throughout all 

PP2C groups found to have diverged in this second active period. All PP2C vertebrate-specific 

duplications characterized in this study show specialized tissue-specific expression patterns. In 

fact, in each of these duplications, one duplicant is uniquely expressed in either skeletal muscle 

or nervous system tissue. Whereas PP2Cα and FEM2 are ubiquitous in the cell, their duplication 

partners PP2Cβ and POPX1 are tissue specific. PP2Cβ splice variants were shown to display 

skeletal muscle and heart specific tissue expression (Marley et al. 1998; Seroussi et al. 2001). 

Similarly, POPX1 displays brain specific expression (Koh et al. 2002). PP2Cζ is displayed in the 

testicular germ cells (Kashiwaba et al. 2003), while PPM1H is expressed in the brain and is 

involved in neuronal inhibitory pathways (Labes, Roder, and Roach 1998). Finally, PDP1 and 

PDP2 both catalyze the same reaction, but differ in tissue distribution. PDP1 is highly expressed 

in skeletal muscle, whereas PDP2 is expressed in liver (Huang et al. 1998).  
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The evolutionary conservation pattern of PP2C suggests that the highly conserved catalytic 

domain and the surrounding core are shared by all PP2C members. Of specific interest are 

those residues which have not been previously identified as critical to the enzymatic function of 

the protein. Since these sites are abundant on the protein surface, they may represent novel 

protein or ligand binding sites. As the PP2C superfamily plays an important role in delicate 

signals relayed across the cell, it is likely that the different PP2C proteins are further bound by 

tight regulation. Thus, the novel conserved sites found may be the key to understanding these 

regulatory mechanisms.  

Aside from the shared conserved domain, several PP2C families have a unique appendage 

which may be the specificity determinant of this family. For instance, in the C-terminal region, 

PP2Cα and PP2Cβ share a unique tail (Figure A.4). These differences may be responsible for the 

fact that the two paralogs differ in their substrate binding abilities. Further investigation of the 

differences between the families could also focus on the gene-regulation level, for instance by 

comparing the promoters and non-translated regions of the different paralogs. We have 

previously reported that the non-translated regions of PP2Cβ are highly conserved throughout 

orthologous genes (Seroussi et al. 2001), indicating a significant regulatory role for these 

regions. Furthermore, different PP2Cβ transcripts were found to differ by alternative splicing 

and alternative promoters (Ohnishi et al. 1999). It thus seems that the diversification which 

gave rise to new PP2C families continued with the creation of variants which differ at the 

transcriptional level. Pinpointing the precise functional differences among and within the PP2C 
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families remains a challenge which may play a pivotal role in our understanding of complex 

signal networks in cells. 



 

 

בחינה .  המדריך-ני חוסר הוודאות שבעץבפ MSA-לפיתוח שיטה חדשה למדידת החסינות של כל עמודה ב 5

לדיוק של שיטות עימוד מגלה שהמדד החדש ( benchmark)באמצעות מאגרי רצפים המשמשים אמת מידה 

מתאר מימוש המדד החדש בשרת  6פרק .  ומאפשר את הפרדתם MSA-מהימנים ב-מזהה במדויק אזורים בלתי

GUIDANCE ,שרת זה .  כמו גם כלים לניפוי והתמודדות עם טעויות אלה ,המאפשר זיהוי מדויק של טעויות עימוד

מפני הנזקים הנגררים בעקבות  MSA-מספק לחוקרים אמצעים מונעים המאפשרים הגנה על מחקרים מבוססי

 .עימוד שגוי

מקובלים של  benchmarkבמהלך כל המחקרים הללו השיפורים האלגוריתמיים המוצעים נבחנים לפי מאגרי 

המתודולוגיות המפותחות מאפשרות שימוש במודלים .  גם יחד (simulation studies)ם ומדומים רצפים אמיתיי

.  הסתברותיים מתקדמים של אבולוציה של רצפים בשילוב עם האלגוריתמים המובילים לפילוגנזה ועימוד רצפים

י טכנולוגיות הריצוף "ים עניתן דגש לתכנון אלגוריתמי יעיל המאפשר ניתוח כמויות הנתונים המיוצר, למרות זאת

של  רבים םאלפיגדולים המונים לנתח ברמת דיוק גבוהה אוספים יהיה כך ניתן מתוך .  המתקדמות במהירות

ככלים החידושים האלגוריתמיים נבנו .  בעבר ניתן היה לנתח רק באמצעות שיטות פשטניותאשר , רצפים

.  והם מופצים בקרה הקהילה המדעית, וגיים מקביליםעם פיתוחים מתודולכדי לאפשר את שילובם מודולאריים 

לדיוק לתרום  וצפויותלניתוח משווה של רצפים המתודולוגיה יסודות משתלבות בשפותחו במחקר זה השיטות 

 . ומהימנות של מחקרים עתידיים בביולוגיה מולקולארית

  



 

 

 תקציר

מאמץ , כיום.  א הומולוגיים"ם של רצפי דנמהפכה אחר מהפכה בטכנולוגיות ריצוף אפשרו צבירת אוספים גדולי

לשם הסקת תובנות לגבי , י ניתוח משווה"מרכזי בחקר ביולוגיה מולקולארית מכוון לניצול מאגרי המידע הללו ע

החל מפילוגנזה מולקולארית , טווח רחב של ניתוחים השוואתיים של רצפים.  התפקידים הביולוגיים של הרצפים

 ,Multiple Sequence Alignment (MSA), נבנים על עימוד רצפים, ממדיים-נים תלתוכלה בחיזוי מבני חלבו

אלגוריתמים מורכבים פותחו עבור שתי .  ושיחזור עצים פילוגנטיים כמבני הנתונים היסודיים בניתוח רצפים

הקשיים   .וגם של העץ בחוסר מהימנות MSA-אך בפועל לוקים אזורים נרחבים של ה, המשימות החישוביות הללו

 –י התלות ההדדית בינן כיוון שהן מזינות זו את זו ונבנות זו על זה "בכל אחת משתי הבעיות בנפרד מוגברים ע

התלות ההדדית הזו .  MSAואילו שיטות לשחזור עצים מסתמכות על , עצים משמשים להדרכת תהליך העימוד

 .בים האלו בניתוח רצפיםיוצרת בהכרח שרשרת של העברת טעויות הלוך וחזור בין שני השל

, המחקרים האגודים בעבודת הגמר הזו מתמודדים עם האתגרים של שיפור הדיוק בשחזור עצים ועימוד רצפים

מפותחות שיטות מעורבות לשחזור עצים בכדי לשלב  3בפרק .  ושל בחינת העברת השגיאות ההדדית בין השניים

-יחד עם אלגוריתמים מבוססי( Bayesian)שיטות בייזיאניות  את היתרונות של מידול אבולוציוני מדויק באמצעות

, תרומה משמעותית לדיוק מושגת באמצעות שימוש במודלים של שונות בקצב האבולוציוני.  מרחק יעילים

יישומן של שיטות אלו מודגם תוך שחזור וניתוח שתי .  covarion-דמוי, ובהמשך במודלים מתקדמים יותר

משמשת  4בפרק , בהמשך.  ץ מינים של חיידקים ועץ של משפחת אנזימים בבעלי חייםע –פילוגנזות לדוגמא 

 .מדריך משופר לדיוק של תוכנות עימוד שונות-תבנית חוזרנית לחקר התרומה של עץ

.  חשוב לא פחות להבין ולאפיין את גורמי השגיאות השונים שנותרים, לצד המאמצים לצמצם טעויות בשחזור

המשמש שיטות לעימוד הדרגתי של ( guide-tree)המדריך -ית מראה שחוסר וודאות בעץניתוח התלות ההדד

 תובנה זאת מובילה בפרק .  הם מקור עיקרי לחוסר וודאות בעימוד( progressive sequence alignment)רצפים 
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